ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spimev Unicode version

Theorem spimev 1849
Description: Distinct-variable version of spime 1729. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
spimev.1  |-  ( x  =  y  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
spimev  |-  ( ph  ->  E. x ps )
Distinct variable group:    ph, x
Allowed substitution hints:    ph( y)    ps( x, y)

Proof of Theorem spimev
StepHypRef Expression
1 nfv 1516 . 2  |-  F/ x ph
2 spimev.1 . 2  |-  ( x  =  y  ->  ( ph  ->  ps ) )
31, 2spime 1729 1  |-  ( ph  ->  E. x ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449
This theorem is referenced by:  speiv  1850  cbvexvw  1908  rnxpid  5038
  Copyright terms: Public domain W3C validator