ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spimt Unicode version

Theorem spimt 1747
Description: Closed theorem form of spim 1749. (Contributed by NM, 15-Jan-2008.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Feb-2018.)
Assertion
Ref Expression
spimt  |-  ( ( F/ x ps  /\  A. x ( x  =  y  ->  ( ph  ->  ps ) ) )  ->  ( A. x ph  ->  ps ) )

Proof of Theorem spimt
StepHypRef Expression
1 a9e 1707 . . . 4  |-  E. x  x  =  y
2 exim 1610 . . . 4  |-  ( A. x ( x  =  y  ->  ( ph  ->  ps ) )  -> 
( E. x  x  =  y  ->  E. x
( ph  ->  ps )
) )
31, 2mpi 15 . . 3  |-  ( A. x ( x  =  y  ->  ( ph  ->  ps ) )  ->  E. x ( ph  ->  ps ) )
4 19.35-1 1635 . . 3  |-  ( E. x ( ph  ->  ps )  ->  ( A. x ph  ->  E. x ps ) )
53, 4syl 14 . 2  |-  ( A. x ( x  =  y  ->  ( ph  ->  ps ) )  -> 
( A. x ph  ->  E. x ps )
)
6 19.9t 1653 . . 3  |-  ( F/ x ps  ->  ( E. x ps  <->  ps )
)
76biimpd 144 . 2  |-  ( F/ x ps  ->  ( E. x ps  ->  ps ) )
85, 7sylan9r 410 1  |-  ( ( F/ x ps  /\  A. x ( x  =  y  ->  ( ph  ->  ps ) ) )  ->  ( A. x ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364   F/wnf 1471   E.wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-i9 1541  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-nf 1472
This theorem is referenced by:  spimd  15257
  Copyright terms: Public domain W3C validator