| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an | Unicode version | ||
| Description: A triple syllogism inference. (Contributed by NM, 13-May-2004.) |
| Ref | Expression |
|---|---|
| syl3an.1 |
|
| syl3an.2 |
|
| syl3an.3 |
|
| syl3an.4 |
|
| Ref | Expression |
|---|---|
| syl3an |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an.1 |
. . 3
| |
| 2 | syl3an.2 |
. . 3
| |
| 3 | syl3an.3 |
. . 3
| |
| 4 | 1, 2, 3 | 3anim123i 1187 |
. 2
|
| 5 | syl3an.4 |
. 2
| |
| 6 | 4, 5 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: syl2an3an 1311 funtpg 5339 ftpg 5786 eloprabga 6050 prfidisj 7045 djuenun 7350 addasspig 7473 mulasspig 7475 distrpig 7476 addcanpig 7477 mulcanpig 7478 ltapig 7481 distrnqg 7530 distrnq0 7602 cnegexlem2 8278 zletr 9452 zdivadd 9492 xaddass 10021 iooneg 10140 zltaddlt1le 10159 fzen 10195 fzaddel 10211 fzrev 10236 fzrevral2 10258 fzshftral 10260 fzosubel2 10356 fzonn0p1p1 10374 swrdf 11141 resqrexlemover 11406 fisum0diag2 11843 dvdsnegb 12204 muldvds1 12212 muldvds2 12213 dvdscmul 12214 dvdsmulc 12215 dvds2add 12221 dvds2sub 12222 dvdstr 12224 addmodlteqALT 12255 divalgb 12321 ndvdsadd 12327 absmulgcd 12423 rpmulgcd 12432 cncongr2 12511 hashdvds 12628 pythagtriplem1 12673 mulgmodid 13582 nmzsubg 13631 |
| Copyright terms: Public domain | W3C validator |