| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an | Unicode version | ||
| Description: A triple syllogism inference. (Contributed by NM, 13-May-2004.) |
| Ref | Expression |
|---|---|
| syl3an.1 |
|
| syl3an.2 |
|
| syl3an.3 |
|
| syl3an.4 |
|
| Ref | Expression |
|---|---|
| syl3an |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an.1 |
. . 3
| |
| 2 | syl3an.2 |
. . 3
| |
| 3 | syl3an.3 |
. . 3
| |
| 4 | 1, 2, 3 | 3anim123i 1208 |
. 2
|
| 5 | syl3an.4 |
. 2
| |
| 6 | 4, 5 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: syl2an3an 1332 funtpg 5371 ftpg 5822 eloprabga 6090 prfidisj 7085 djuenun 7390 addasspig 7513 mulasspig 7515 distrpig 7516 addcanpig 7517 mulcanpig 7518 ltapig 7521 distrnqg 7570 distrnq0 7642 cnegexlem2 8318 zletr 9492 zdivadd 9532 xaddass 10061 iooneg 10180 zltaddlt1le 10199 fzen 10235 fzaddel 10251 fzrev 10276 fzrevral2 10298 fzshftral 10300 fzosubel2 10396 fzonn0p1p1 10414 swrdf 11182 pfxccatin12lem4 11253 resqrexlemover 11516 fisum0diag2 11953 dvdsnegb 12314 muldvds1 12322 muldvds2 12323 dvdscmul 12324 dvdsmulc 12325 dvds2add 12331 dvds2sub 12332 dvdstr 12334 addmodlteqALT 12365 divalgb 12431 ndvdsadd 12437 absmulgcd 12533 rpmulgcd 12542 cncongr2 12621 hashdvds 12738 pythagtriplem1 12783 mulgmodid 13693 nmzsubg 13742 |
| Copyright terms: Public domain | W3C validator |