![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl3an | Unicode version |
Description: A triple syllogism inference. (Contributed by NM, 13-May-2004.) |
Ref | Expression |
---|---|
syl3an.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl3an.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl3an.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl3an.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl3an |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl3an.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | syl3an.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3anim123i 1184 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | syl3an.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: syl2an3an 1298 funtpg 5269 ftpg 5703 eloprabga 5965 prfidisj 6929 djuenun 7214 addasspig 7332 mulasspig 7334 distrpig 7335 addcanpig 7336 mulcanpig 7337 ltapig 7340 distrnqg 7389 distrnq0 7461 cnegexlem2 8136 zletr 9305 zdivadd 9345 xaddass 9872 iooneg 9991 zltaddlt1le 10010 fzen 10046 fzaddel 10062 fzrev 10087 fzrevral2 10109 fzshftral 10111 fzosubel2 10198 fzonn0p1p1 10216 resqrexlemover 11022 fisum0diag2 11458 dvdsnegb 11818 muldvds1 11826 muldvds2 11827 dvdscmul 11828 dvdsmulc 11829 dvds2add 11835 dvds2sub 11836 dvdstr 11838 addmodlteqALT 11868 divalgb 11933 ndvdsadd 11939 absmulgcd 12021 rpmulgcd 12030 cncongr2 12107 hashdvds 12224 pythagtriplem1 12268 mulgmodid 13028 nmzsubg 13076 |
Copyright terms: Public domain | W3C validator |