Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl3an | Unicode version |
Description: A triple syllogism inference. (Contributed by NM, 13-May-2004.) |
Ref | Expression |
---|---|
syl3an.1 | |
syl3an.2 | |
syl3an.3 | |
syl3an.4 |
Ref | Expression |
---|---|
syl3an |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an.1 | . . 3 | |
2 | syl3an.2 | . . 3 | |
3 | syl3an.3 | . . 3 | |
4 | 1, 2, 3 | 3anim123i 1174 | . 2 |
5 | syl3an.4 | . 2 | |
6 | 4, 5 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: syl2an3an 1288 funtpg 5238 ftpg 5668 eloprabga 5925 prfidisj 6888 djuenun 7164 addasspig 7267 mulasspig 7269 distrpig 7270 addcanpig 7271 mulcanpig 7272 ltapig 7275 distrnqg 7324 distrnq0 7396 cnegexlem2 8070 zletr 9236 zdivadd 9276 xaddass 9801 iooneg 9920 zltaddlt1le 9939 fzen 9974 fzaddel 9990 fzrev 10015 fzrevral2 10037 fzshftral 10039 fzosubel2 10126 fzonn0p1p1 10144 resqrexlemover 10948 fisum0diag2 11384 dvdsnegb 11744 muldvds1 11752 muldvds2 11753 dvdscmul 11754 dvdsmulc 11755 dvds2add 11761 dvds2sub 11762 dvdstr 11764 addmodlteqALT 11793 divalgb 11858 ndvdsadd 11864 absmulgcd 11946 rpmulgcd 11955 cncongr2 12032 hashdvds 12149 pythagtriplem1 12193 |
Copyright terms: Public domain | W3C validator |