| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an | Unicode version | ||
| Description: A triple syllogism inference. (Contributed by NM, 13-May-2004.) |
| Ref | Expression |
|---|---|
| syl3an.1 |
|
| syl3an.2 |
|
| syl3an.3 |
|
| syl3an.4 |
|
| Ref | Expression |
|---|---|
| syl3an |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an.1 |
. . 3
| |
| 2 | syl3an.2 |
. . 3
| |
| 3 | syl3an.3 |
. . 3
| |
| 4 | 1, 2, 3 | 3anim123i 1186 |
. 2
|
| 5 | syl3an.4 |
. 2
| |
| 6 | 4, 5 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syl2an3an 1310 funtpg 5324 ftpg 5767 eloprabga 6031 prfidisj 7023 djuenun 7323 addasspig 7442 mulasspig 7444 distrpig 7445 addcanpig 7446 mulcanpig 7447 ltapig 7450 distrnqg 7499 distrnq0 7571 cnegexlem2 8247 zletr 9421 zdivadd 9461 xaddass 9990 iooneg 10109 zltaddlt1le 10128 fzen 10164 fzaddel 10180 fzrev 10205 fzrevral2 10227 fzshftral 10229 fzosubel2 10322 fzonn0p1p1 10340 resqrexlemover 11263 fisum0diag2 11700 dvdsnegb 12061 muldvds1 12069 muldvds2 12070 dvdscmul 12071 dvdsmulc 12072 dvds2add 12078 dvds2sub 12079 dvdstr 12081 addmodlteqALT 12112 divalgb 12178 ndvdsadd 12184 absmulgcd 12280 rpmulgcd 12289 cncongr2 12368 hashdvds 12485 pythagtriplem1 12530 mulgmodid 13439 nmzsubg 13488 |
| Copyright terms: Public domain | W3C validator |