| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an | Unicode version | ||
| Description: A triple syllogism inference. (Contributed by NM, 13-May-2004.) |
| Ref | Expression |
|---|---|
| syl3an.1 |
|
| syl3an.2 |
|
| syl3an.3 |
|
| syl3an.4 |
|
| Ref | Expression |
|---|---|
| syl3an |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an.1 |
. . 3
| |
| 2 | syl3an.2 |
. . 3
| |
| 3 | syl3an.3 |
. . 3
| |
| 4 | 1, 2, 3 | 3anim123i 1186 |
. 2
|
| 5 | syl3an.4 |
. 2
| |
| 6 | 4, 5 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syl2an3an 1310 funtpg 5324 ftpg 5767 eloprabga 6031 prfidisj 7023 djuenun 7323 addasspig 7442 mulasspig 7444 distrpig 7445 addcanpig 7446 mulcanpig 7447 ltapig 7450 distrnqg 7499 distrnq0 7571 cnegexlem2 8247 zletr 9421 zdivadd 9461 xaddass 9990 iooneg 10109 zltaddlt1le 10128 fzen 10164 fzaddel 10180 fzrev 10205 fzrevral2 10227 fzshftral 10229 fzosubel2 10322 fzonn0p1p1 10340 resqrexlemover 11292 fisum0diag2 11729 dvdsnegb 12090 muldvds1 12098 muldvds2 12099 dvdscmul 12100 dvdsmulc 12101 dvds2add 12107 dvds2sub 12108 dvdstr 12110 addmodlteqALT 12141 divalgb 12207 ndvdsadd 12213 absmulgcd 12309 rpmulgcd 12318 cncongr2 12397 hashdvds 12514 pythagtriplem1 12559 mulgmodid 13468 nmzsubg 13517 |
| Copyright terms: Public domain | W3C validator |