![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl3an3 | Unicode version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an3.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl3an3.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl3an3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an3.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl3an3.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | 3exp 1142 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | syl7 68 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | 3imp 1137 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 df-3an 926 |
This theorem is referenced by: syl3an3b 1212 syl3an3br 1215 vtoclgft 2669 ovmpt2x 5773 ovmpt2ga 5774 nnanq0 7015 apreim 8078 apsub1 8115 divassap 8155 ltmul2 8315 elfzo 9556 fzodcel 9559 subcn2 10696 mulcn2 10697 ndvdsp1 11206 gcddiv 11282 lcmneg 11330 |
Copyright terms: Public domain | W3C validator |