| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an3 | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an3.1 |
|
| syl3an3.2 |
|
| Ref | Expression |
|---|---|
| syl3an3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an3.1 |
. . 3
| |
| 2 | syl3an3.2 |
. . . 4
| |
| 3 | 2 | 3exp 1226 |
. . 3
|
| 4 | 1, 3 | syl7 69 |
. 2
|
| 5 | 4 | 3imp 1217 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: syl3an3b 1309 syl3an3br 1312 vtoclgft 2851 ovmpox 6132 ovmpoga 6133 nnanq0 7641 apreim 8746 apsub1 8785 divassap 8833 ltmul2 8999 xleadd1 10067 xltadd2 10069 elfzo 10341 fzodcel 10345 subcn2 11817 mulcn2 11818 ndvdsp1 12438 gcddiv 12535 lcmneg 12591 mulgaddcom 13678 lspsnss 14362 rnglidlrng 14456 neipsm 14822 opnneip 14827 hmeof1o2 14976 blcntrps 15083 blcntr 15084 neibl 15159 blnei 15160 metss 15162 rpcxpsub 15576 cxpcom 15606 rplogbzexp 15622 |
| Copyright terms: Public domain | W3C validator |