ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl3an3 Unicode version

Theorem syl3an3 1285
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an3.1  |-  ( ph  ->  th )
syl3an3.2  |-  ( ( ps  /\  ch  /\  th )  ->  ta )
Assertion
Ref Expression
syl3an3  |-  ( ( ps  /\  ch  /\  ph )  ->  ta )

Proof of Theorem syl3an3
StepHypRef Expression
1 syl3an3.1 . . 3  |-  ( ph  ->  th )
2 syl3an3.2 . . . 4  |-  ( ( ps  /\  ch  /\  th )  ->  ta )
323exp 1205 . . 3  |-  ( ps 
->  ( ch  ->  ( th  ->  ta ) ) )
41, 3syl7 69 . 2  |-  ( ps 
->  ( ch  ->  ( ph  ->  ta ) ) )
543imp 1196 1  |-  ( ( ps  /\  ch  /\  ph )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  syl3an3b  1288  syl3an3br  1291  vtoclgft  2828  ovmpox  6097  ovmpoga  6098  nnanq0  7606  apreim  8711  apsub1  8750  divassap  8798  ltmul2  8964  xleadd1  10032  xltadd2  10034  elfzo  10306  fzodcel  10310  subcn2  11737  mulcn2  11738  ndvdsp1  12358  gcddiv  12455  lcmneg  12511  mulgaddcom  13597  lspsnss  14281  rnglidlrng  14375  neipsm  14741  opnneip  14746  hmeof1o2  14895  blcntrps  15002  blcntr  15003  neibl  15078  blnei  15079  metss  15081  rpcxpsub  15495  cxpcom  15525  rplogbzexp  15541
  Copyright terms: Public domain W3C validator