| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an3 | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an3.1 |
|
| syl3an3.2 |
|
| Ref | Expression |
|---|---|
| syl3an3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an3.1 |
. . 3
| |
| 2 | syl3an3.2 |
. . . 4
| |
| 3 | 2 | 3exp 1205 |
. . 3
|
| 4 | 1, 3 | syl7 69 |
. 2
|
| 5 | 4 | 3imp 1196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: syl3an3b 1288 syl3an3br 1291 vtoclgft 2828 ovmpox 6097 ovmpoga 6098 nnanq0 7606 apreim 8711 apsub1 8750 divassap 8798 ltmul2 8964 xleadd1 10032 xltadd2 10034 elfzo 10306 fzodcel 10310 subcn2 11737 mulcn2 11738 ndvdsp1 12358 gcddiv 12455 lcmneg 12511 mulgaddcom 13597 lspsnss 14281 rnglidlrng 14375 neipsm 14741 opnneip 14746 hmeof1o2 14895 blcntrps 15002 blcntr 15003 neibl 15078 blnei 15079 metss 15081 rpcxpsub 15495 cxpcom 15525 rplogbzexp 15541 |
| Copyright terms: Public domain | W3C validator |