| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an3 | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an3.1 |
|
| syl3an3.2 |
|
| Ref | Expression |
|---|---|
| syl3an3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an3.1 |
. . 3
| |
| 2 | syl3an3.2 |
. . . 4
| |
| 3 | 2 | 3exp 1205 |
. . 3
|
| 4 | 1, 3 | syl7 69 |
. 2
|
| 5 | 4 | 3imp 1196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: syl3an3b 1288 syl3an3br 1291 vtoclgft 2823 ovmpox 6074 ovmpoga 6075 nnanq0 7571 apreim 8676 apsub1 8715 divassap 8763 ltmul2 8929 xleadd1 9997 xltadd2 9999 elfzo 10271 fzodcel 10275 subcn2 11622 mulcn2 11623 ndvdsp1 12243 gcddiv 12340 lcmneg 12396 mulgaddcom 13482 lspsnss 14166 rnglidlrng 14260 neipsm 14626 opnneip 14631 hmeof1o2 14780 blcntrps 14887 blcntr 14888 neibl 14963 blnei 14964 metss 14966 rpcxpsub 15380 cxpcom 15410 rplogbzexp 15426 |
| Copyright terms: Public domain | W3C validator |