![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl3an3 | Unicode version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an3.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl3an3.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl3an3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an3.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl3an3.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | 3exp 1204 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | syl7 69 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | 3imp 1195 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: syl3an3b 1287 syl3an3br 1290 vtoclgft 2811 ovmpox 6048 ovmpoga 6049 nnanq0 7520 apreim 8624 apsub1 8663 divassap 8711 ltmul2 8877 xleadd1 9944 xltadd2 9946 elfzo 10218 fzodcel 10222 subcn2 11457 mulcn2 11458 ndvdsp1 12076 gcddiv 12159 lcmneg 12215 mulgaddcom 13219 lspsnss 13903 rnglidlrng 13997 neipsm 14333 opnneip 14338 hmeof1o2 14487 blcntrps 14594 blcntr 14595 neibl 14670 blnei 14671 metss 14673 rpcxpsub 15084 cxpcom 15112 rplogbzexp 15127 |
Copyright terms: Public domain | W3C validator |