![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl3an3 | Unicode version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an3.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl3an3.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl3an3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an3.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl3an3.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | 3exp 1203 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | syl7 69 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | 3imp 1194 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 981 |
This theorem is referenced by: syl3an3b 1286 syl3an3br 1289 vtoclgft 2799 ovmpox 6017 ovmpoga 6018 nnanq0 7471 apreim 8574 apsub1 8613 divassap 8661 ltmul2 8827 xleadd1 9889 xltadd2 9891 elfzo 10163 fzodcel 10166 subcn2 11333 mulcn2 11334 ndvdsp1 11951 gcddiv 12034 lcmneg 12088 mulgaddcom 13047 lspsnss 13650 rnglidlrng 13744 neipsm 14007 opnneip 14012 hmeof1o2 14161 blcntrps 14268 blcntr 14269 neibl 14344 blnei 14345 metss 14347 rpcxpsub 14682 cxpcom 14710 rplogbzexp 14725 |
Copyright terms: Public domain | W3C validator |