ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl3an3 Unicode version

Theorem syl3an3 1283
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an3.1  |-  ( ph  ->  th )
syl3an3.2  |-  ( ( ps  /\  ch  /\  th )  ->  ta )
Assertion
Ref Expression
syl3an3  |-  ( ( ps  /\  ch  /\  ph )  ->  ta )

Proof of Theorem syl3an3
StepHypRef Expression
1 syl3an3.1 . . 3  |-  ( ph  ->  th )
2 syl3an3.2 . . . 4  |-  ( ( ps  /\  ch  /\  th )  ->  ta )
323exp 1203 . . 3  |-  ( ps 
->  ( ch  ->  ( th  ->  ta ) ) )
41, 3syl7 69 . 2  |-  ( ps 
->  ( ch  ->  ( ph  ->  ta ) ) )
543imp 1194 1  |-  ( ( ps  /\  ch  /\  ph )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 981
This theorem is referenced by:  syl3an3b  1286  syl3an3br  1289  vtoclgft  2799  ovmpox  6017  ovmpoga  6018  nnanq0  7471  apreim  8574  apsub1  8613  divassap  8661  ltmul2  8827  xleadd1  9889  xltadd2  9891  elfzo  10163  fzodcel  10166  subcn2  11333  mulcn2  11334  ndvdsp1  11951  gcddiv  12034  lcmneg  12088  mulgaddcom  13047  lspsnss  13650  rnglidlrng  13744  neipsm  14007  opnneip  14012  hmeof1o2  14161  blcntrps  14268  blcntr  14269  neibl  14344  blnei  14345  metss  14347  rpcxpsub  14682  cxpcom  14710  rplogbzexp  14725
  Copyright terms: Public domain W3C validator