ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelrng Unicode version

Theorem opelrng 4731
Description: Membership of second member of an ordered pair in a range. (Contributed by Jim Kingdon, 26-Jan-2019.)
Assertion
Ref Expression
opelrng  |-  ( ( A  e.  F  /\  B  e.  G  /\  <. A ,  B >.  e.  C )  ->  B  e.  ran  C )

Proof of Theorem opelrng
StepHypRef Expression
1 df-br 3896 . 2  |-  ( A C B  <->  <. A ,  B >.  e.  C )
2 brelrng 4730 . 2  |-  ( ( A  e.  F  /\  B  e.  G  /\  A C B )  ->  B  e.  ran  C )
31, 2syl3an3br 1240 1  |-  ( ( A  e.  F  /\  B  e.  G  /\  <. A ,  B >.  e.  C )  ->  B  e.  ran  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 945    e. wcel 1463   <.cop 3496   class class class wbr 3895   ran crn 4500
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-v 2659  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-br 3896  df-opab 3950  df-cnv 4507  df-dm 4509  df-rn 4510
This theorem is referenced by:  2ndrn  6035
  Copyright terms: Public domain W3C validator