ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelrng Unicode version

Theorem opelrng 4898
Description: Membership of second member of an ordered pair in a range. (Contributed by Jim Kingdon, 26-Jan-2019.)
Assertion
Ref Expression
opelrng  |-  ( ( A  e.  F  /\  B  e.  G  /\  <. A ,  B >.  e.  C )  ->  B  e.  ran  C )

Proof of Theorem opelrng
StepHypRef Expression
1 df-br 4034 . 2  |-  ( A C B  <->  <. A ,  B >.  e.  C )
2 brelrng 4897 . 2  |-  ( ( A  e.  F  /\  B  e.  G  /\  A C B )  ->  B  e.  ran  C )
31, 2syl3an3br 1290 1  |-  ( ( A  e.  F  /\  B  e.  G  /\  <. A ,  B >.  e.  C )  ->  B  e.  ran  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    e. wcel 2167   <.cop 3625   class class class wbr 4033   ran crn 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-cnv 4671  df-dm 4673  df-rn 4674
This theorem is referenced by:  2ndrn  6241
  Copyright terms: Public domain W3C validator