| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelrng | Unicode version | ||
| Description: Membership of second member of an ordered pair in a range. (Contributed by Jim Kingdon, 26-Jan-2019.) |
| Ref | Expression |
|---|---|
| opelrng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4026 |
. 2
| |
| 2 | brelrng 4883 |
. 2
| |
| 3 | 1, 2 | syl3an3br 1290 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4143 ax-pow 4199 ax-pr 4234 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2758 df-un 3152 df-in 3154 df-ss 3161 df-pw 3599 df-sn 3620 df-pr 3621 df-op 3623 df-br 4026 df-opab 4087 df-cnv 4659 df-dm 4661 df-rn 4662 |
| This theorem is referenced by: 2ndrn 6216 |
| Copyright terms: Public domain | W3C validator |