ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelrng Unicode version

Theorem opelrng 4861
Description: Membership of second member of an ordered pair in a range. (Contributed by Jim Kingdon, 26-Jan-2019.)
Assertion
Ref Expression
opelrng  |-  ( ( A  e.  F  /\  B  e.  G  /\  <. A ,  B >.  e.  C )  ->  B  e.  ran  C )

Proof of Theorem opelrng
StepHypRef Expression
1 df-br 4006 . 2  |-  ( A C B  <->  <. A ,  B >.  e.  C )
2 brelrng 4860 . 2  |-  ( ( A  e.  F  /\  B  e.  G  /\  A C B )  ->  B  e.  ran  C )
31, 2syl3an3br 1279 1  |-  ( ( A  e.  F  /\  B  e.  G  /\  <. A ,  B >.  e.  C )  ->  B  e.  ran  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978    e. wcel 2148   <.cop 3597   class class class wbr 4005   ran crn 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-cnv 4636  df-dm 4638  df-rn 4639
This theorem is referenced by:  2ndrn  6186
  Copyright terms: Public domain W3C validator