| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xchbinxr | Unicode version | ||
| Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
| Ref | Expression |
|---|---|
| xchbinxr.1 |
|
| xchbinxr.2 |
|
| Ref | Expression |
|---|---|
| xchbinxr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xchbinxr.1 |
. 2
| |
| 2 | xchbinxr.2 |
. . 3
| |
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 1, 3 | xchbinx 683 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: xordc1 1404 sbnv 1903 ralnex 2485 difab 3432 disjsn 3684 iindif2m 3984 reldm0 4884 |
| Copyright terms: Public domain | W3C validator |