ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjsn Unicode version

Theorem disjsn 3681
Description: Intersection with the singleton of a non-member is disjoint. (Contributed by NM, 22-May-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.)
Assertion
Ref Expression
disjsn  |-  ( ( A  i^i  { B } )  =  (/)  <->  -.  B  e.  A )

Proof of Theorem disjsn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 disj1 3498 . 2  |-  ( ( A  i^i  { B } )  =  (/)  <->  A. x ( x  e.  A  ->  -.  x  e.  { B } ) )
2 con2b 670 . . . 4  |-  ( ( x  e.  A  ->  -.  x  e.  { B } )  <->  ( x  e.  { B }  ->  -.  x  e.  A ) )
3 velsn 3636 . . . . 5  |-  ( x  e.  { B }  <->  x  =  B )
43imbi1i 238 . . . 4  |-  ( ( x  e.  { B }  ->  -.  x  e.  A )  <->  ( x  =  B  ->  -.  x  e.  A ) )
5 imnan 691 . . . 4  |-  ( ( x  =  B  ->  -.  x  e.  A
)  <->  -.  ( x  =  B  /\  x  e.  A ) )
62, 4, 53bitri 206 . . 3  |-  ( ( x  e.  A  ->  -.  x  e.  { B } )  <->  -.  (
x  =  B  /\  x  e.  A )
)
76albii 1481 . 2  |-  ( A. x ( x  e.  A  ->  -.  x  e.  { B } )  <->  A. x  -.  (
x  =  B  /\  x  e.  A )
)
8 alnex 1510 . . 3  |-  ( A. x  -.  ( x  =  B  /\  x  e.  A )  <->  -.  E. x
( x  =  B  /\  x  e.  A
) )
9 df-clel 2189 . . 3  |-  ( B  e.  A  <->  E. x
( x  =  B  /\  x  e.  A
) )
108, 9xchbinxr 684 . 2  |-  ( A. x  -.  ( x  =  B  /\  x  e.  A )  <->  -.  B  e.  A )
111, 7, 103bitri 206 1  |-  ( ( A  i^i  { B } )  =  (/)  <->  -.  B  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   E.wex 1503    e. wcel 2164    i^i cin 3153   (/)c0 3447   {csn 3619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-dif 3156  df-in 3160  df-nul 3448  df-sn 3625
This theorem is referenced by:  disjsn2  3682  ssdifsn  3747  orddisj  4579  ndmima  5043  funtpg  5306  fnunsn  5362  ressnop0  5740  ftpg  5743  fsnunf  5759  fsnunfv  5760  enpr2d  6873  phpm  6923  fiunsnnn  6939  ac6sfi  6956  unsnfi  6977  tpfidisj  6986  iunfidisj  7007  pm54.43  7252  dju1en  7275  fzpreddisj  10140  fzp1disj  10149  frecfzennn  10500  hashunsng  10881  hashxp  10900  fsumsplitsn  11556  sumtp  11560  fsumsplitsnun  11565  fsum2dlemstep  11580  fsumconst  11600  fsumabs  11611  fsumiun  11623  fprodm1  11744  fprodunsn  11750  fprod2dlemstep  11768  fprodsplitsn  11779  ennnfonelemhf1o  12573  structcnvcnv  12637  fsumcncntop  14746  dvmptfsum  14904
  Copyright terms: Public domain W3C validator