ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjsn Unicode version

Theorem disjsn 3633
Description: Intersection with the singleton of a non-member is disjoint. (Contributed by NM, 22-May-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.)
Assertion
Ref Expression
disjsn  |-  ( ( A  i^i  { B } )  =  (/)  <->  -.  B  e.  A )

Proof of Theorem disjsn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 disj1 3455 . 2  |-  ( ( A  i^i  { B } )  =  (/)  <->  A. x ( x  e.  A  ->  -.  x  e.  { B } ) )
2 con2b 659 . . . 4  |-  ( ( x  e.  A  ->  -.  x  e.  { B } )  <->  ( x  e.  { B }  ->  -.  x  e.  A ) )
3 velsn 3588 . . . . 5  |-  ( x  e.  { B }  <->  x  =  B )
43imbi1i 237 . . . 4  |-  ( ( x  e.  { B }  ->  -.  x  e.  A )  <->  ( x  =  B  ->  -.  x  e.  A ) )
5 imnan 680 . . . 4  |-  ( ( x  =  B  ->  -.  x  e.  A
)  <->  -.  ( x  =  B  /\  x  e.  A ) )
62, 4, 53bitri 205 . . 3  |-  ( ( x  e.  A  ->  -.  x  e.  { B } )  <->  -.  (
x  =  B  /\  x  e.  A )
)
76albii 1457 . 2  |-  ( A. x ( x  e.  A  ->  -.  x  e.  { B } )  <->  A. x  -.  (
x  =  B  /\  x  e.  A )
)
8 alnex 1486 . . 3  |-  ( A. x  -.  ( x  =  B  /\  x  e.  A )  <->  -.  E. x
( x  =  B  /\  x  e.  A
) )
9 df-clel 2160 . . 3  |-  ( B  e.  A  <->  E. x
( x  =  B  /\  x  e.  A
) )
108, 9xchbinxr 673 . 2  |-  ( A. x  -.  ( x  =  B  /\  x  e.  A )  <->  -.  B  e.  A )
111, 7, 103bitri 205 1  |-  ( ( A  i^i  { B } )  =  (/)  <->  -.  B  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1340    = wceq 1342   E.wex 1479    e. wcel 2135    i^i cin 3111   (/)c0 3405   {csn 3571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-v 2724  df-dif 3114  df-in 3118  df-nul 3406  df-sn 3577
This theorem is referenced by:  disjsn2  3634  ssdifsn  3699  orddisj  4518  ndmima  4976  funtpg  5234  fnunsn  5290  ressnop0  5661  ftpg  5664  fsnunf  5680  fsnunfv  5681  enpr2d  6775  phpm  6823  fiunsnnn  6839  ac6sfi  6856  unsnfi  6876  tpfidisj  6885  iunfidisj  6903  pm54.43  7138  dju1en  7161  fzpreddisj  9997  fzp1disj  10006  frecfzennn  10352  hashunsng  10710  hashxp  10729  fsumsplitsn  11341  sumtp  11345  fsumsplitsnun  11350  fsum2dlemstep  11365  fsumconst  11385  fsumabs  11396  fsumiun  11408  fprodm1  11529  fprodunsn  11535  fprod2dlemstep  11553  fprodsplitsn  11564  ennnfonelemhf1o  12309  structcnvcnv  12373  fsumcncntop  13123
  Copyright terms: Public domain W3C validator