ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjsn Unicode version

Theorem disjsn 3695
Description: Intersection with the singleton of a non-member is disjoint. (Contributed by NM, 22-May-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.)
Assertion
Ref Expression
disjsn  |-  ( ( A  i^i  { B } )  =  (/)  <->  -.  B  e.  A )

Proof of Theorem disjsn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 disj1 3511 . 2  |-  ( ( A  i^i  { B } )  =  (/)  <->  A. x ( x  e.  A  ->  -.  x  e.  { B } ) )
2 con2b 671 . . . 4  |-  ( ( x  e.  A  ->  -.  x  e.  { B } )  <->  ( x  e.  { B }  ->  -.  x  e.  A ) )
3 velsn 3650 . . . . 5  |-  ( x  e.  { B }  <->  x  =  B )
43imbi1i 238 . . . 4  |-  ( ( x  e.  { B }  ->  -.  x  e.  A )  <->  ( x  =  B  ->  -.  x  e.  A ) )
5 imnan 692 . . . 4  |-  ( ( x  =  B  ->  -.  x  e.  A
)  <->  -.  ( x  =  B  /\  x  e.  A ) )
62, 4, 53bitri 206 . . 3  |-  ( ( x  e.  A  ->  -.  x  e.  { B } )  <->  -.  (
x  =  B  /\  x  e.  A )
)
76albii 1493 . 2  |-  ( A. x ( x  e.  A  ->  -.  x  e.  { B } )  <->  A. x  -.  (
x  =  B  /\  x  e.  A )
)
8 alnex 1522 . . 3  |-  ( A. x  -.  ( x  =  B  /\  x  e.  A )  <->  -.  E. x
( x  =  B  /\  x  e.  A
) )
9 df-clel 2201 . . 3  |-  ( B  e.  A  <->  E. x
( x  =  B  /\  x  e.  A
) )
108, 9xchbinxr 685 . 2  |-  ( A. x  -.  ( x  =  B  /\  x  e.  A )  <->  -.  B  e.  A )
111, 7, 103bitri 206 1  |-  ( ( A  i^i  { B } )  =  (/)  <->  -.  B  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    = wceq 1373   E.wex 1515    e. wcel 2176    i^i cin 3165   (/)c0 3460   {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-dif 3168  df-in 3172  df-nul 3461  df-sn 3639
This theorem is referenced by:  disjsn2  3696  ssdifsn  3761  opwo0id  4293  orddisj  4594  ndmima  5059  funtpg  5325  fnunsn  5383  ressnop0  5765  ftpg  5768  fsnunf  5784  fsnunfv  5785  enpr2d  6911  phpm  6962  fiunsnnn  6978  ac6sfi  6995  unsnfi  7016  tpfidisj  7026  iunfidisj  7048  pm54.43  7298  dju1en  7325  fzpreddisj  10193  fzp1disj  10202  frecfzennn  10571  hashunsng  10952  hashxp  10971  fsumsplitsn  11721  sumtp  11725  fsumsplitsnun  11730  fsum2dlemstep  11745  fsumconst  11765  fsumabs  11776  fsumiun  11788  fprodm1  11909  fprodunsn  11915  fprod2dlemstep  11933  fprodsplitsn  11944  bitsinv1  12273  ennnfonelemhf1o  12784  structcnvcnv  12848  fsumcncntop  15039  dvmptfsum  15197  perfectlem2  15472
  Copyright terms: Public domain W3C validator