ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjsn Unicode version

Theorem disjsn 3638
Description: Intersection with the singleton of a non-member is disjoint. (Contributed by NM, 22-May-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.)
Assertion
Ref Expression
disjsn  |-  ( ( A  i^i  { B } )  =  (/)  <->  -.  B  e.  A )

Proof of Theorem disjsn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 disj1 3459 . 2  |-  ( ( A  i^i  { B } )  =  (/)  <->  A. x ( x  e.  A  ->  -.  x  e.  { B } ) )
2 con2b 659 . . . 4  |-  ( ( x  e.  A  ->  -.  x  e.  { B } )  <->  ( x  e.  { B }  ->  -.  x  e.  A ) )
3 velsn 3593 . . . . 5  |-  ( x  e.  { B }  <->  x  =  B )
43imbi1i 237 . . . 4  |-  ( ( x  e.  { B }  ->  -.  x  e.  A )  <->  ( x  =  B  ->  -.  x  e.  A ) )
5 imnan 680 . . . 4  |-  ( ( x  =  B  ->  -.  x  e.  A
)  <->  -.  ( x  =  B  /\  x  e.  A ) )
62, 4, 53bitri 205 . . 3  |-  ( ( x  e.  A  ->  -.  x  e.  { B } )  <->  -.  (
x  =  B  /\  x  e.  A )
)
76albii 1458 . 2  |-  ( A. x ( x  e.  A  ->  -.  x  e.  { B } )  <->  A. x  -.  (
x  =  B  /\  x  e.  A )
)
8 alnex 1487 . . 3  |-  ( A. x  -.  ( x  =  B  /\  x  e.  A )  <->  -.  E. x
( x  =  B  /\  x  e.  A
) )
9 df-clel 2161 . . 3  |-  ( B  e.  A  <->  E. x
( x  =  B  /\  x  e.  A
) )
108, 9xchbinxr 673 . 2  |-  ( A. x  -.  ( x  =  B  /\  x  e.  A )  <->  -.  B  e.  A )
111, 7, 103bitri 205 1  |-  ( ( A  i^i  { B } )  =  (/)  <->  -.  B  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341    = wceq 1343   E.wex 1480    e. wcel 2136    i^i cin 3115   (/)c0 3409   {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-dif 3118  df-in 3122  df-nul 3410  df-sn 3582
This theorem is referenced by:  disjsn2  3639  ssdifsn  3704  orddisj  4523  ndmima  4981  funtpg  5239  fnunsn  5295  ressnop0  5666  ftpg  5669  fsnunf  5685  fsnunfv  5686  enpr2d  6783  phpm  6831  fiunsnnn  6847  ac6sfi  6864  unsnfi  6884  tpfidisj  6893  iunfidisj  6911  pm54.43  7146  dju1en  7169  fzpreddisj  10006  fzp1disj  10015  frecfzennn  10361  hashunsng  10720  hashxp  10739  fsumsplitsn  11351  sumtp  11355  fsumsplitsnun  11360  fsum2dlemstep  11375  fsumconst  11395  fsumabs  11406  fsumiun  11418  fprodm1  11539  fprodunsn  11545  fprod2dlemstep  11563  fprodsplitsn  11574  ennnfonelemhf1o  12346  structcnvcnv  12410  fsumcncntop  13206
  Copyright terms: Public domain W3C validator