ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difab Unicode version

Theorem difab 3377
Description: Difference of two class abstractions. (Contributed by NM, 23-Oct-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difab  |-  ( { x  |  ph }  \  { x  |  ps } )  =  {
x  |  ( ph  /\ 
-.  ps ) }

Proof of Theorem difab
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-clab 2144 . . 3  |-  ( y  e.  { x  |  ( ph  /\  -.  ps ) }  <->  [ y  /  x ] ( ph  /\ 
-.  ps ) )
2 sban 1935 . . 3  |-  ( [ y  /  x ]
( ph  /\  -.  ps ) 
<->  ( [ y  /  x ] ph  /\  [
y  /  x ]  -.  ps ) )
3 df-clab 2144 . . . . 5  |-  ( y  e.  { x  | 
ph }  <->  [ y  /  x ] ph )
43bicomi 131 . . . 4  |-  ( [ y  /  x ] ph 
<->  y  e.  { x  |  ph } )
5 sbn 1932 . . . . 5  |-  ( [ y  /  x ]  -.  ps  <->  -.  [ y  /  x ] ps )
6 df-clab 2144 . . . . 5  |-  ( y  e.  { x  |  ps }  <->  [ y  /  x ] ps )
75, 6xchbinxr 673 . . . 4  |-  ( [ y  /  x ]  -.  ps  <->  -.  y  e.  { x  |  ps }
)
84, 7anbi12i 456 . . 3  |-  ( ( [ y  /  x ] ph  /\  [ y  /  x ]  -.  ps )  <->  ( y  e. 
{ x  |  ph }  /\  -.  y  e. 
{ x  |  ps } ) )
91, 2, 83bitrri 206 . 2  |-  ( ( y  e.  { x  |  ph }  /\  -.  y  e.  { x  |  ps } )  <->  y  e.  { x  |  ( ph  /\ 
-.  ps ) } )
109difeqri 3228 1  |-  ( { x  |  ph }  \  { x  |  ps } )  =  {
x  |  ( ph  /\ 
-.  ps ) }
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    = wceq 1335   [wsb 1742    e. wcel 2128   {cab 2143    \ cdif 3099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-dif 3104
This theorem is referenced by:  notab  3378  difrab  3382  notrab  3385  imadiflem  5252  imadif  5253
  Copyright terms: Public domain W3C validator