| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > intirr | Unicode version | ||
| Description: Two ways of saying a relation is irreflexive. Definition of irreflexivity in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) | 
| Ref | Expression | 
|---|---|
| intirr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | incom 3355 | 
. . . 4
 | |
| 2 | 1 | eqeq1i 2204 | 
. . 3
 | 
| 3 | disj2 3506 | 
. . 3
 | |
| 4 | reli 4795 | 
. . . 4
 | |
| 5 | ssrel 4751 | 
. . . 4
 | |
| 6 | 4, 5 | ax-mp 5 | 
. . 3
 | 
| 7 | 2, 3, 6 | 3bitri 206 | 
. 2
 | 
| 8 | equcom 1720 | 
. . . . 5
 | |
| 9 | vex 2766 | 
. . . . . 6
 | |
| 10 | 9 | ideq 4818 | 
. . . . 5
 | 
| 11 | df-br 4034 | 
. . . . 5
 | |
| 12 | 8, 10, 11 | 3bitr2i 208 | 
. . . 4
 | 
| 13 | vex 2766 | 
. . . . . . . 8
 | |
| 14 | 13, 9 | opex 4262 | 
. . . . . . 7
 | 
| 15 | 14 | biantrur 303 | 
. . . . . 6
 | 
| 16 | eldif 3166 | 
. . . . . 6
 | |
| 17 | 15, 16 | bitr4i 187 | 
. . . . 5
 | 
| 18 | df-br 4034 | 
. . . . 5
 | |
| 19 | 17, 18 | xchnxbir 682 | 
. . . 4
 | 
| 20 | 12, 19 | imbi12i 239 | 
. . 3
 | 
| 21 | 20 | 2albii 1485 | 
. 2
 | 
| 22 | nfv 1542 | 
. . . 4
 | |
| 23 | breq2 4037 | 
. . . . 5
 | |
| 24 | 23 | notbid 668 | 
. . . 4
 | 
| 25 | 22, 24 | equsal 1741 | 
. . 3
 | 
| 26 | 25 | albii 1484 | 
. 2
 | 
| 27 | 7, 21, 26 | 3bitr2i 208 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |