ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intirr Unicode version

Theorem intirr 5114
Description: Two ways of saying a relation is irreflexive. Definition of irreflexivity in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
intirr  |-  ( ( R  i^i  _I  )  =  (/)  <->  A. x  -.  x R x )
Distinct variable group:    x, R

Proof of Theorem intirr
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 incom 3396 . . . 4  |-  ( R  i^i  _I  )  =  (  _I  i^i  R
)
21eqeq1i 2237 . . 3  |-  ( ( R  i^i  _I  )  =  (/)  <->  (  _I  i^i  R )  =  (/) )
3 disj2 3547 . . 3  |-  ( (  _I  i^i  R )  =  (/)  <->  _I  C_  ( _V 
\  R ) )
4 reli 4850 . . . 4  |-  Rel  _I
5 ssrel 4806 . . . 4  |-  ( Rel 
_I  ->  (  _I  C_  ( _V  \  R )  <->  A. x A. y (
<. x ,  y >.  e.  _I  ->  <. x ,  y >.  e.  ( _V  \  R ) ) ) )
64, 5ax-mp 5 . . 3  |-  (  _I  C_  ( _V  \  R
)  <->  A. x A. y
( <. x ,  y
>.  e.  _I  ->  <. x ,  y >.  e.  ( _V  \  R ) ) )
72, 3, 63bitri 206 . 2  |-  ( ( R  i^i  _I  )  =  (/)  <->  A. x A. y
( <. x ,  y
>.  e.  _I  ->  <. x ,  y >.  e.  ( _V  \  R ) ) )
8 equcom 1752 . . . . 5  |-  ( y  =  x  <->  x  =  y )
9 vex 2802 . . . . . 6  |-  y  e. 
_V
109ideq 4873 . . . . 5  |-  ( x  _I  y  <->  x  =  y )
11 df-br 4083 . . . . 5  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
128, 10, 113bitr2i 208 . . . 4  |-  ( y  =  x  <->  <. x ,  y >.  e.  _I  )
13 vex 2802 . . . . . . . 8  |-  x  e. 
_V
1413, 9opex 4314 . . . . . . 7  |-  <. x ,  y >.  e.  _V
1514biantrur 303 . . . . . 6  |-  ( -. 
<. x ,  y >.  e.  R  <->  ( <. x ,  y >.  e.  _V  /\ 
-.  <. x ,  y
>.  e.  R ) )
16 eldif 3206 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( _V  \  R
)  <->  ( <. x ,  y >.  e.  _V  /\ 
-.  <. x ,  y
>.  e.  R ) )
1715, 16bitr4i 187 . . . . 5  |-  ( -. 
<. x ,  y >.  e.  R  <->  <. x ,  y
>.  e.  ( _V  \  R ) )
18 df-br 4083 . . . . 5  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
1917, 18xchnxbir 685 . . . 4  |-  ( -.  x R y  <->  <. x ,  y >.  e.  ( _V  \  R ) )
2012, 19imbi12i 239 . . 3  |-  ( ( y  =  x  ->  -.  x R y )  <-> 
( <. x ,  y
>.  e.  _I  ->  <. x ,  y >.  e.  ( _V  \  R ) ) )
21202albii 1517 . 2  |-  ( A. x A. y ( y  =  x  ->  -.  x R y )  <->  A. x A. y ( <. x ,  y >.  e.  _I  -> 
<. x ,  y >.  e.  ( _V  \  R
) ) )
22 nfv 1574 . . . 4  |-  F/ y  -.  x R x
23 breq2 4086 . . . . 5  |-  ( y  =  x  ->  (
x R y  <->  x R x ) )
2423notbid 671 . . . 4  |-  ( y  =  x  ->  ( -.  x R y  <->  -.  x R x ) )
2522, 24equsal 1773 . . 3  |-  ( A. y ( y  =  x  ->  -.  x R y )  <->  -.  x R x )
2625albii 1516 . 2  |-  ( A. x A. y ( y  =  x  ->  -.  x R y )  <->  A. x  -.  x R x )
277, 21, 263bitr2i 208 1  |-  ( ( R  i^i  _I  )  =  (/)  <->  A. x  -.  x R x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393    = wceq 1395    e. wcel 2200   _Vcvv 2799    \ cdif 3194    i^i cin 3196    C_ wss 3197   (/)c0 3491   <.cop 3669   class class class wbr 4082    _I cid 4378   Rel wrel 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator