| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intirr | Unicode version | ||
| Description: Two ways of saying a relation is irreflexive. Definition of irreflexivity in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| intirr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 3396 |
. . . 4
| |
| 2 | 1 | eqeq1i 2237 |
. . 3
|
| 3 | disj2 3547 |
. . 3
| |
| 4 | reli 4850 |
. . . 4
| |
| 5 | ssrel 4806 |
. . . 4
| |
| 6 | 4, 5 | ax-mp 5 |
. . 3
|
| 7 | 2, 3, 6 | 3bitri 206 |
. 2
|
| 8 | equcom 1752 |
. . . . 5
| |
| 9 | vex 2802 |
. . . . . 6
| |
| 10 | 9 | ideq 4873 |
. . . . 5
|
| 11 | df-br 4083 |
. . . . 5
| |
| 12 | 8, 10, 11 | 3bitr2i 208 |
. . . 4
|
| 13 | vex 2802 |
. . . . . . . 8
| |
| 14 | 13, 9 | opex 4314 |
. . . . . . 7
|
| 15 | 14 | biantrur 303 |
. . . . . 6
|
| 16 | eldif 3206 |
. . . . . 6
| |
| 17 | 15, 16 | bitr4i 187 |
. . . . 5
|
| 18 | df-br 4083 |
. . . . 5
| |
| 19 | 17, 18 | xchnxbir 685 |
. . . 4
|
| 20 | 12, 19 | imbi12i 239 |
. . 3
|
| 21 | 20 | 2albii 1517 |
. 2
|
| 22 | nfv 1574 |
. . . 4
| |
| 23 | breq2 4086 |
. . . . 5
| |
| 24 | 23 | notbid 671 |
. . . 4
|
| 25 | 22, 24 | equsal 1773 |
. . 3
|
| 26 | 25 | albii 1516 |
. 2
|
| 27 | 7, 21, 26 | 3bitr2i 208 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |