ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashunlem Unicode version

Theorem hashunlem 10819
Description: Lemma for hashun 10820. Ordinal size of the union. (Contributed by Jim Kingdon, 25-Feb-2022.)
Hypotheses
Ref Expression
hashunlem.a  |-  ( ph  ->  A  e.  Fin )
hashunlem.b  |-  ( ph  ->  B  e.  Fin )
hashunlem.disj  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
hashunlem.n  |-  ( ph  ->  N  e.  om )
hashunlem.m  |-  ( ph  ->  M  e.  om )
hashunlem.an  |-  ( ph  ->  A  ~~  N )
hashunlem.bm  |-  ( ph  ->  B  ~~  M )
Assertion
Ref Expression
hashunlem  |-  ( ph  ->  ( A  u.  B
)  ~~  ( N  +o  M ) )

Proof of Theorem hashunlem
Dummy variables  j  w  k  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4021 . . . . 5  |-  ( w  =  (/)  ->  ( w 
~~  j  <->  (/)  ~~  j
) )
2 uneq2 3298 . . . . . 6  |-  ( w  =  (/)  ->  ( A  u.  w )  =  ( A  u.  (/) ) )
32breq1d 4028 . . . . 5  |-  ( w  =  (/)  ->  ( ( A  u.  w ) 
~~  ( N  +o  j )  <->  ( A  u.  (/) )  ~~  ( N  +o  j ) ) )
41, 3anbi12d 473 . . . 4  |-  ( w  =  (/)  ->  ( ( w  ~~  j  /\  ( A  u.  w
)  ~~  ( N  +o  j ) )  <->  ( (/)  ~~  j  /\  ( A  u.  (/) )  ~~  ( N  +o  j
) ) ) )
54rexbidv 2491 . . 3  |-  ( w  =  (/)  ->  ( E. j  e.  om  (
w  ~~  j  /\  ( A  u.  w
)  ~~  ( N  +o  j ) )  <->  E. j  e.  om  ( (/)  ~~  j  /\  ( A  u.  (/) )  ~~  ( N  +o  j
) ) ) )
6 breq1 4021 . . . . 5  |-  ( w  =  y  ->  (
w  ~~  j  <->  y  ~~  j ) )
7 uneq2 3298 . . . . . 6  |-  ( w  =  y  ->  ( A  u.  w )  =  ( A  u.  y ) )
87breq1d 4028 . . . . 5  |-  ( w  =  y  ->  (
( A  u.  w
)  ~~  ( N  +o  j )  <->  ( A  u.  y )  ~~  ( N  +o  j ) ) )
96, 8anbi12d 473 . . . 4  |-  ( w  =  y  ->  (
( w  ~~  j  /\  ( A  u.  w
)  ~~  ( N  +o  j ) )  <->  ( y  ~~  j  /\  ( A  u.  y )  ~~  ( N  +o  j
) ) ) )
109rexbidv 2491 . . 3  |-  ( w  =  y  ->  ( E. j  e.  om  ( w  ~~  j  /\  ( A  u.  w
)  ~~  ( N  +o  j ) )  <->  E. j  e.  om  ( y  ~~  j  /\  ( A  u.  y )  ~~  ( N  +o  j ) ) ) )
11 breq1 4021 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( w  ~~  j 
<->  ( y  u.  {
z } )  ~~  j ) )
12 uneq2 3298 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( A  u.  w )  =  ( A  u.  ( y  u.  { z } ) ) )
1312breq1d 4028 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( A  u.  w )  ~~  ( N  +o  j
)  <->  ( A  u.  ( y  u.  {
z } ) ) 
~~  ( N  +o  j ) ) )
1411, 13anbi12d 473 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( w 
~~  j  /\  ( A  u.  w )  ~~  ( N  +o  j
) )  <->  ( (
y  u.  { z } )  ~~  j  /\  ( A  u.  (
y  u.  { z } ) )  ~~  ( N  +o  j
) ) ) )
1514rexbidv 2491 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( E. j  e.  om  ( w  ~~  j  /\  ( A  u.  w )  ~~  ( N  +o  j ) )  <->  E. j  e.  om  ( ( y  u. 
{ z } ) 
~~  j  /\  ( A  u.  ( y  u.  { z } ) )  ~~  ( N  +o  j ) ) ) )
16 breq1 4021 . . . . 5  |-  ( w  =  B  ->  (
w  ~~  j  <->  B  ~~  j ) )
17 uneq2 3298 . . . . . 6  |-  ( w  =  B  ->  ( A  u.  w )  =  ( A  u.  B ) )
1817breq1d 4028 . . . . 5  |-  ( w  =  B  ->  (
( A  u.  w
)  ~~  ( N  +o  j )  <->  ( A  u.  B )  ~~  ( N  +o  j ) ) )
1916, 18anbi12d 473 . . . 4  |-  ( w  =  B  ->  (
( w  ~~  j  /\  ( A  u.  w
)  ~~  ( N  +o  j ) )  <->  ( B  ~~  j  /\  ( A  u.  B )  ~~  ( N  +o  j
) ) ) )
2019rexbidv 2491 . . 3  |-  ( w  =  B  ->  ( E. j  e.  om  ( w  ~~  j  /\  ( A  u.  w
)  ~~  ( N  +o  j ) )  <->  E. j  e.  om  ( B  ~~  j  /\  ( A  u.  B )  ~~  ( N  +o  j ) ) ) )
21 peano1 4611 . . . . 5  |-  (/)  e.  om
2221a1i 9 . . . 4  |-  ( ph  -> 
(/)  e.  om )
23 0ex 4145 . . . . . 6  |-  (/)  e.  _V
2423enref 6792 . . . . 5  |-  (/)  ~~  (/)
2524a1i 9 . . . 4  |-  ( ph  -> 
(/)  ~~  (/) )
26 hashunlem.an . . . . 5  |-  ( ph  ->  A  ~~  N )
27 un0 3471 . . . . . 6  |-  ( A  u.  (/) )  =  A
2827a1i 9 . . . . 5  |-  ( ph  ->  ( A  u.  (/) )  =  A )
29 hashunlem.n . . . . . 6  |-  ( ph  ->  N  e.  om )
30 nna0 6500 . . . . . 6  |-  ( N  e.  om  ->  ( N  +o  (/) )  =  N )
3129, 30syl 14 . . . . 5  |-  ( ph  ->  ( N  +o  (/) )  =  N )
3226, 28, 313brtr4d 4050 . . . 4  |-  ( ph  ->  ( A  u.  (/) )  ~~  ( N  +o  (/) ) )
33 breq2 4022 . . . . . 6  |-  ( j  =  (/)  ->  ( (/)  ~~  j  <->  (/)  ~~  (/) ) )
34 oveq2 5905 . . . . . . 7  |-  ( j  =  (/)  ->  ( N  +o  j )  =  ( N  +o  (/) ) )
3534breq2d 4030 . . . . . 6  |-  ( j  =  (/)  ->  ( ( A  u.  (/) )  ~~  ( N  +o  j
)  <->  ( A  u.  (/) )  ~~  ( N  +o  (/) ) ) )
3633, 35anbi12d 473 . . . . 5  |-  ( j  =  (/)  ->  ( (
(/)  ~~  j  /\  ( A  u.  (/) )  ~~  ( N  +o  j
) )  <->  ( (/)  ~~  (/)  /\  ( A  u.  (/) )  ~~  ( N  +o  (/) ) ) ) )
3736rspcev 2856 . . . 4  |-  ( (
(/)  e.  om  /\  ( (/)  ~~  (/)  /\  ( A  u.  (/) )  ~~  ( N  +o  (/) ) ) )  ->  E. j  e.  om  ( (/)  ~~  j  /\  ( A  u.  (/) )  ~~  ( N  +o  j
) ) )
3822, 25, 32, 37syl12anc 1247 . . 3  |-  ( ph  ->  E. j  e.  om  ( (/)  ~~  j  /\  ( A  u.  (/) )  ~~  ( N  +o  j
) ) )
39 peano2 4612 . . . . . . . 8  |-  ( j  e.  om  ->  suc  j  e.  om )
4039ad2antlr 489 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  suc  j  e.  om )
41 simp-4r 542 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  y  e.  Fin )
42 vex 2755 . . . . . . . . . 10  |-  z  e. 
_V
4342a1i 9 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  z  e.  _V )
44 simprr 531 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  ->  z  e.  ( B  \  y ) )
4544ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  z  e.  ( B  \  y ) )
4645eldifbd 3156 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  -.  z  e.  y )
4743, 46eldifd 3154 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  z  e.  ( _V  \  y ) )
48 simplr 528 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  j  e.  om )
49 simprl 529 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  y  ~~  j
)
50 fiunsnnn 6910 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\  z  e.  ( _V 
\  y ) )  /\  ( j  e. 
om  /\  y  ~~  j ) )  -> 
( y  u.  {
z } )  ~~  suc  j )
5141, 47, 48, 49, 50syl22anc 1250 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  ( y  u. 
{ z } ) 
~~  suc  j )
52 hashunlem.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  Fin )
5352ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  A  e.  Fin )
54 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  ->  y  C_  B
)
5554ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  y  C_  B
)
56 hashunlem.disj . . . . . . . . . . . 12  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
5756ad4antr 494 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  ( A  i^i  B )  =  (/) )
58 incom 3342 . . . . . . . . . . . 12  |-  ( y  i^i  A )  =  ( A  i^i  y
)
59 incom 3342 . . . . . . . . . . . . . 14  |-  ( A  i^i  B )  =  ( B  i^i  A
)
6059eqeq1i 2197 . . . . . . . . . . . . 13  |-  ( ( A  i^i  B )  =  (/)  <->  ( B  i^i  A )  =  (/) )
61 ssdisj 3494 . . . . . . . . . . . . 13  |-  ( ( y  C_  B  /\  ( B  i^i  A )  =  (/) )  ->  (
y  i^i  A )  =  (/) )
6260, 61sylan2b 287 . . . . . . . . . . . 12  |-  ( ( y  C_  B  /\  ( A  i^i  B )  =  (/) )  ->  (
y  i^i  A )  =  (/) )
6358, 62eqtr3id 2236 . . . . . . . . . . 11  |-  ( ( y  C_  B  /\  ( A  i^i  B )  =  (/) )  ->  ( A  i^i  y )  =  (/) )
6455, 57, 63syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  ( A  i^i  y )  =  (/) )
65 unfidisj 6951 . . . . . . . . . 10  |-  ( ( A  e.  Fin  /\  y  e.  Fin  /\  ( A  i^i  y )  =  (/) )  ->  ( A  u.  y )  e. 
Fin )
6653, 41, 64, 65syl3anc 1249 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  ( A  u.  y )  e.  Fin )
6745eldifad 3155 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  z  e.  B
)
68 minel 3499 . . . . . . . . . . . 12  |-  ( ( z  e.  B  /\  ( A  i^i  B )  =  (/) )  ->  -.  z  e.  A )
6967, 57, 68syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  -.  z  e.  A )
70 ioran 753 . . . . . . . . . . . 12  |-  ( -.  ( z  e.  A  \/  z  e.  y
)  <->  ( -.  z  e.  A  /\  -.  z  e.  y ) )
71 elun 3291 . . . . . . . . . . . 12  |-  ( z  e.  ( A  u.  y )  <->  ( z  e.  A  \/  z  e.  y ) )
7270, 71xchnxbir 682 . . . . . . . . . . 11  |-  ( -.  z  e.  ( A  u.  y )  <->  ( -.  z  e.  A  /\  -.  z  e.  y
) )
7369, 46, 72sylanbrc 417 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  -.  z  e.  ( A  u.  y
) )
7443, 73eldifd 3154 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  z  e.  ( _V  \  ( A  u.  y ) ) )
7529ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  N  e.  om )
76 nnacl 6506 . . . . . . . . . 10  |-  ( ( N  e.  om  /\  j  e.  om )  ->  ( N  +o  j
)  e.  om )
7775, 48, 76syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  ( N  +o  j )  e.  om )
78 simprr 531 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  ( A  u.  y )  ~~  ( N  +o  j ) )
79 fiunsnnn 6910 . . . . . . . . 9  |-  ( ( ( ( A  u.  y )  e.  Fin  /\  z  e.  ( _V 
\  ( A  u.  y ) ) )  /\  ( ( N  +o  j )  e. 
om  /\  ( A  u.  y )  ~~  ( N  +o  j ) ) )  ->  ( ( A  u.  y )  u.  { z } ) 
~~  suc  ( N  +o  j ) )
8066, 74, 77, 78, 79syl22anc 1250 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  ( ( A  u.  y )  u. 
{ z } ) 
~~  suc  ( N  +o  j ) )
81 unass 3307 . . . . . . . . . 10  |-  ( ( A  u.  y )  u.  { z } )  =  ( A  u.  ( y  u. 
{ z } ) )
8281a1i 9 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  ( ( A  u.  y )  u. 
{ z } )  =  ( A  u.  ( y  u.  {
z } ) ) )
8382eqcomd 2195 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  ( A  u.  ( y  u.  {
z } ) )  =  ( ( A  u.  y )  u. 
{ z } ) )
84 nnasuc 6502 . . . . . . . . 9  |-  ( ( N  e.  om  /\  j  e.  om )  ->  ( N  +o  suc  j )  =  suc  ( N  +o  j
) )
8575, 48, 84syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  ( N  +o  suc  j )  =  suc  ( N  +o  j
) )
8680, 83, 853brtr4d 4050 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  ( A  u.  ( y  u.  {
z } ) ) 
~~  ( N  +o  suc  j ) )
87 breq2 4022 . . . . . . . . 9  |-  ( k  =  suc  j  -> 
( ( y  u. 
{ z } ) 
~~  k  <->  ( y  u.  { z } ) 
~~  suc  j )
)
88 oveq2 5905 . . . . . . . . . 10  |-  ( k  =  suc  j  -> 
( N  +o  k
)  =  ( N  +o  suc  j ) )
8988breq2d 4030 . . . . . . . . 9  |-  ( k  =  suc  j  -> 
( ( A  u.  ( y  u.  {
z } ) ) 
~~  ( N  +o  k )  <->  ( A  u.  ( y  u.  {
z } ) ) 
~~  ( N  +o  suc  j ) ) )
9087, 89anbi12d 473 . . . . . . . 8  |-  ( k  =  suc  j  -> 
( ( ( y  u.  { z } )  ~~  k  /\  ( A  u.  (
y  u.  { z } ) )  ~~  ( N  +o  k
) )  <->  ( (
y  u.  { z } )  ~~  suc  j  /\  ( A  u.  ( y  u.  {
z } ) ) 
~~  ( N  +o  suc  j ) ) ) )
9190rspcev 2856 . . . . . . 7  |-  ( ( suc  j  e.  om  /\  ( ( y  u. 
{ z } ) 
~~  suc  j  /\  ( A  u.  (
y  u.  { z } ) )  ~~  ( N  +o  suc  j
) ) )  ->  E. k  e.  om  ( ( y  u. 
{ z } ) 
~~  k  /\  ( A  u.  ( y  u.  { z } ) )  ~~  ( N  +o  k ) ) )
9240, 51, 86, 91syl12anc 1247 . . . . . 6  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  /\  (
y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) ) )  ->  E. k  e.  om  ( ( y  u. 
{ z } ) 
~~  k  /\  ( A  u.  ( y  u.  { z } ) )  ~~  ( N  +o  k ) ) )
9392ex 115 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  j  e. 
om )  ->  (
( y  ~~  j  /\  ( A  u.  y
)  ~~  ( N  +o  j ) )  ->  E. k  e.  om  ( ( y  u. 
{ z } ) 
~~  k  /\  ( A  u.  ( y  u.  { z } ) )  ~~  ( N  +o  k ) ) ) )
9493rexlimdva 2607 . . . 4  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  ->  ( E. j  e.  om  ( y  ~~  j  /\  ( A  u.  y )  ~~  ( N  +o  j ) )  ->  E. k  e.  om  ( ( y  u. 
{ z } ) 
~~  k  /\  ( A  u.  ( y  u.  { z } ) )  ~~  ( N  +o  k ) ) ) )
95 breq2 4022 . . . . . 6  |-  ( j  =  k  ->  (
( y  u.  {
z } )  ~~  j 
<->  ( y  u.  {
z } )  ~~  k ) )
96 oveq2 5905 . . . . . . 7  |-  ( j  =  k  ->  ( N  +o  j )  =  ( N  +o  k
) )
9796breq2d 4030 . . . . . 6  |-  ( j  =  k  ->  (
( A  u.  (
y  u.  { z } ) )  ~~  ( N  +o  j
)  <->  ( A  u.  ( y  u.  {
z } ) ) 
~~  ( N  +o  k ) ) )
9895, 97anbi12d 473 . . . . 5  |-  ( j  =  k  ->  (
( ( y  u. 
{ z } ) 
~~  j  /\  ( A  u.  ( y  u.  { z } ) )  ~~  ( N  +o  j ) )  <-> 
( ( y  u. 
{ z } ) 
~~  k  /\  ( A  u.  ( y  u.  { z } ) )  ~~  ( N  +o  k ) ) ) )
9998cbvrexv 2719 . . . 4  |-  ( E. j  e.  om  (
( y  u.  {
z } )  ~~  j  /\  ( A  u.  ( y  u.  {
z } ) ) 
~~  ( N  +o  j ) )  <->  E. k  e.  om  ( ( y  u.  { z } )  ~~  k  /\  ( A  u.  (
y  u.  { z } ) )  ~~  ( N  +o  k
) ) )
10094, 99imbitrrdi 162 . . 3  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  ->  ( E. j  e.  om  ( y  ~~  j  /\  ( A  u.  y )  ~~  ( N  +o  j ) )  ->  E. j  e.  om  ( ( y  u. 
{ z } ) 
~~  j  /\  ( A  u.  ( y  u.  { z } ) )  ~~  ( N  +o  j ) ) ) )
101 hashunlem.b . . 3  |-  ( ph  ->  B  e.  Fin )
1025, 10, 15, 20, 38, 100, 101findcard2sd 6921 . 2  |-  ( ph  ->  E. j  e.  om  ( B  ~~  j  /\  ( A  u.  B
)  ~~  ( N  +o  j ) ) )
103 simprrr 540 . . 3  |-  ( (
ph  /\  ( j  e.  om  /\  ( B 
~~  j  /\  ( A  u.  B )  ~~  ( N  +o  j
) ) ) )  ->  ( A  u.  B )  ~~  ( N  +o  j ) )
104 hashunlem.bm . . . . . . 7  |-  ( ph  ->  B  ~~  M )
105104ensymd 6810 . . . . . 6  |-  ( ph  ->  M  ~~  B )
106 simprrl 539 . . . . . 6  |-  ( (
ph  /\  ( j  e.  om  /\  ( B 
~~  j  /\  ( A  u.  B )  ~~  ( N  +o  j
) ) ) )  ->  B  ~~  j
)
107 entr 6811 . . . . . 6  |-  ( ( M  ~~  B  /\  B  ~~  j )  ->  M  ~~  j )
108105, 106, 107syl2an2r 595 . . . . 5  |-  ( (
ph  /\  ( j  e.  om  /\  ( B 
~~  j  /\  ( A  u.  B )  ~~  ( N  +o  j
) ) ) )  ->  M  ~~  j
)
109 hashunlem.m . . . . . 6  |-  ( ph  ->  M  e.  om )
110 simprl 529 . . . . . 6  |-  ( (
ph  /\  ( j  e.  om  /\  ( B 
~~  j  /\  ( A  u.  B )  ~~  ( N  +o  j
) ) ) )  ->  j  e.  om )
111 nneneq 6886 . . . . . 6  |-  ( ( M  e.  om  /\  j  e.  om )  ->  ( M  ~~  j  <->  M  =  j ) )
112109, 110, 111syl2an2r 595 . . . . 5  |-  ( (
ph  /\  ( j  e.  om  /\  ( B 
~~  j  /\  ( A  u.  B )  ~~  ( N  +o  j
) ) ) )  ->  ( M  ~~  j 
<->  M  =  j ) )
113108, 112mpbid 147 . . . 4  |-  ( (
ph  /\  ( j  e.  om  /\  ( B 
~~  j  /\  ( A  u.  B )  ~~  ( N  +o  j
) ) ) )  ->  M  =  j )
114113oveq2d 5913 . . 3  |-  ( (
ph  /\  ( j  e.  om  /\  ( B 
~~  j  /\  ( A  u.  B )  ~~  ( N  +o  j
) ) ) )  ->  ( N  +o  M )  =  ( N  +o  j ) )
115103, 114breqtrrd 4046 . 2  |-  ( (
ph  /\  ( j  e.  om  /\  ( B 
~~  j  /\  ( A  u.  B )  ~~  ( N  +o  j
) ) ) )  ->  ( A  u.  B )  ~~  ( N  +o  M ) )
116102, 115rexlimddv 2612 1  |-  ( ph  ->  ( A  u.  B
)  ~~  ( N  +o  M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2160   E.wrex 2469   _Vcvv 2752    \ cdif 3141    u. cun 3142    i^i cin 3143    C_ wss 3144   (/)c0 3437   {csn 3607   class class class wbr 4018   suc csuc 4383   omcom 4607  (class class class)co 5897    +o coa 6439    ~~ cen 6765   Fincfn 6767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-1o 6442  df-oadd 6446  df-er 6560  df-en 6768  df-fin 6770
This theorem is referenced by:  hashun  10820
  Copyright terms: Public domain W3C validator