ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucpw1nel3 Unicode version

Theorem sucpw1nel3 7347
Description: The successor of the power set of  1o is not an element of  3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
sucpw1nel3  |-  -.  suc  ~P 1o  e.  3o

Proof of Theorem sucpw1nel3
StepHypRef Expression
1 1oex 6512 . . . . . . 7  |-  1o  e.  _V
21pwex 4228 . . . . . 6  |-  ~P 1o  e.  _V
32sucid 4465 . . . . 5  |-  ~P 1o  e.  suc  ~P 1o
43ne0ii 3470 . . . 4  |-  suc  ~P 1o  =/=  (/)
5 pw1ne0 7342 . . . . . . . 8  |-  ~P 1o  =/=  (/)
62elsn 3649 . . . . . . . 8  |-  ( ~P 1o  e.  { (/) }  <->  ~P 1o  =  (/) )
75, 6nemtbir 2465 . . . . . . 7  |-  -.  ~P 1o  e.  { (/) }
8 df1o2 6517 . . . . . . . 8  |-  1o  =  { (/) }
98eleq2i 2272 . . . . . . 7  |-  ( ~P 1o  e.  1o  <->  ~P 1o  e.  { (/) } )
107, 9mtbir 673 . . . . . 6  |-  -.  ~P 1o  e.  1o
11 eleq2 2269 . . . . . . 7  |-  ( suc 
~P 1o  =  1o 
->  ( ~P 1o  e.  suc  ~P 1o  <->  ~P 1o  e.  1o ) )
123, 11mpbii 148 . . . . . 6  |-  ( suc 
~P 1o  =  1o 
->  ~P 1o  e.  1o )
1310, 12mto 664 . . . . 5  |-  -.  suc  ~P 1o  =  1o
1413neir 2379 . . . 4  |-  suc  ~P 1o  =/=  1o
154, 14nelpri 3657 . . 3  |-  -.  suc  ~P 1o  e.  { (/) ,  1o }
16 df2o3 6518 . . . 4  |-  2o  =  { (/) ,  1o }
1716eleq2i 2272 . . 3  |-  ( suc 
~P 1o  e.  2o  <->  suc 
~P 1o  e.  { (/)
,  1o } )
1815, 17mtbir 673 . 2  |-  -.  suc  ~P 1o  e.  2o
19 pw1ne1 7343 . . . . . 6  |-  ~P 1o  =/=  1o
205, 19nelpri 3657 . . . . 5  |-  -.  ~P 1o  e.  { (/) ,  1o }
2116eleq2i 2272 . . . . 5  |-  ( ~P 1o  e.  2o  <->  ~P 1o  e.  { (/) ,  1o }
)
2220, 21mtbir 673 . . . 4  |-  -.  ~P 1o  e.  2o
23 eleq2 2269 . . . . 5  |-  ( suc 
~P 1o  =  2o 
->  ( ~P 1o  e.  suc  ~P 1o  <->  ~P 1o  e.  2o ) )
243, 23mpbii 148 . . . 4  |-  ( suc 
~P 1o  =  2o 
->  ~P 1o  e.  2o )
2522, 24mto 664 . . 3  |-  -.  suc  ~P 1o  =  2o
262sucex 4548 . . . 4  |-  suc  ~P 1o  e.  _V
2726elsn 3649 . . 3  |-  ( suc 
~P 1o  e.  { 2o }  <->  suc  ~P 1o  =  2o )
2825, 27mtbir 673 . 2  |-  -.  suc  ~P 1o  e.  { 2o }
29 ioran 754 . . 3  |-  ( -.  ( suc  ~P 1o  e.  2o  \/  suc  ~P 1o  e.  { 2o }
)  <->  ( -.  suc  ~P 1o  e.  2o  /\  -.  suc  ~P 1o  e.  { 2o } ) )
30 df-3o 6506 . . . . . 6  |-  3o  =  suc  2o
31 df-suc 4419 . . . . . 6  |-  suc  2o  =  ( 2o  u.  { 2o } )
3230, 31eqtri 2226 . . . . 5  |-  3o  =  ( 2o  u.  { 2o } )
3332eleq2i 2272 . . . 4  |-  ( suc 
~P 1o  e.  3o  <->  suc 
~P 1o  e.  ( 2o  u.  { 2o } ) )
34 elun 3314 . . . 4  |-  ( suc 
~P 1o  e.  ( 2o  u.  { 2o } )  <->  ( suc  ~P 1o  e.  2o  \/  suc  ~P 1o  e.  { 2o } ) )
3533, 34bitri 184 . . 3  |-  ( suc 
~P 1o  e.  3o  <->  ( suc  ~P 1o  e.  2o  \/  suc  ~P 1o  e.  { 2o } ) )
3629, 35xchnxbir 683 . 2  |-  ( -. 
suc  ~P 1o  e.  3o  <->  ( -.  suc  ~P 1o  e.  2o  /\  -.  suc  ~P 1o  e.  { 2o } ) )
3718, 28, 36mpbir2an 945 1  |-  -.  suc  ~P 1o  e.  3o
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2176    u. cun 3164   (/)c0 3460   ~Pcpw 3616   {csn 3633   {cpr 3634   suc csuc 4413   1oc1o 6497   2oc2o 6498   3oc3o 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-tr 4144  df-iord 4414  df-on 4416  df-suc 4419  df-1o 6504  df-2o 6505  df-3o 6506
This theorem is referenced by:  onntri35  7351
  Copyright terms: Public domain W3C validator