| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sucpw1nel3 | Unicode version | ||
| Description: The successor of the
power set of  | 
| Ref | Expression | 
|---|---|
| sucpw1nel3 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1oex 6482 | 
. . . . . . 7
 | |
| 2 | 1 | pwex 4216 | 
. . . . . 6
 | 
| 3 | 2 | sucid 4452 | 
. . . . 5
 | 
| 4 | 3 | ne0ii 3460 | 
. . . 4
 | 
| 5 | pw1ne0 7295 | 
. . . . . . . 8
 | |
| 6 | 2 | elsn 3638 | 
. . . . . . . 8
 | 
| 7 | 5, 6 | nemtbir 2456 | 
. . . . . . 7
 | 
| 8 | df1o2 6487 | 
. . . . . . . 8
 | |
| 9 | 8 | eleq2i 2263 | 
. . . . . . 7
 | 
| 10 | 7, 9 | mtbir 672 | 
. . . . . 6
 | 
| 11 | eleq2 2260 | 
. . . . . . 7
 | |
| 12 | 3, 11 | mpbii 148 | 
. . . . . 6
 | 
| 13 | 10, 12 | mto 663 | 
. . . . 5
 | 
| 14 | 13 | neir 2370 | 
. . . 4
 | 
| 15 | 4, 14 | nelpri 3646 | 
. . 3
 | 
| 16 | df2o3 6488 | 
. . . 4
 | |
| 17 | 16 | eleq2i 2263 | 
. . 3
 | 
| 18 | 15, 17 | mtbir 672 | 
. 2
 | 
| 19 | pw1ne1 7296 | 
. . . . . 6
 | |
| 20 | 5, 19 | nelpri 3646 | 
. . . . 5
 | 
| 21 | 16 | eleq2i 2263 | 
. . . . 5
 | 
| 22 | 20, 21 | mtbir 672 | 
. . . 4
 | 
| 23 | eleq2 2260 | 
. . . . 5
 | |
| 24 | 3, 23 | mpbii 148 | 
. . . 4
 | 
| 25 | 22, 24 | mto 663 | 
. . 3
 | 
| 26 | 2 | sucex 4535 | 
. . . 4
 | 
| 27 | 26 | elsn 3638 | 
. . 3
 | 
| 28 | 25, 27 | mtbir 672 | 
. 2
 | 
| 29 | ioran 753 | 
. . 3
 | |
| 30 | df-3o 6476 | 
. . . . . 6
 | |
| 31 | df-suc 4406 | 
. . . . . 6
 | |
| 32 | 30, 31 | eqtri 2217 | 
. . . . 5
 | 
| 33 | 32 | eleq2i 2263 | 
. . . 4
 | 
| 34 | elun 3304 | 
. . . 4
 | |
| 35 | 33, 34 | bitri 184 | 
. . 3
 | 
| 36 | 29, 35 | xchnxbir 682 | 
. 2
 | 
| 37 | 18, 28, 36 | mpbir2an 944 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-1o 6474 df-2o 6475 df-3o 6476 | 
| This theorem is referenced by: onntri35 7304 | 
| Copyright terms: Public domain | W3C validator |