| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucpw1nel3 | Unicode version | ||
| Description: The successor of the
power set of |
| Ref | Expression |
|---|---|
| sucpw1nel3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 6570 |
. . . . . . 7
| |
| 2 | 1 | pwex 4267 |
. . . . . 6
|
| 3 | 2 | sucid 4508 |
. . . . 5
|
| 4 | 3 | ne0ii 3501 |
. . . 4
|
| 5 | pw1ne0 7413 |
. . . . . . . 8
| |
| 6 | 2 | elsn 3682 |
. . . . . . . 8
|
| 7 | 5, 6 | nemtbir 2489 |
. . . . . . 7
|
| 8 | df1o2 6575 |
. . . . . . . 8
| |
| 9 | 8 | eleq2i 2296 |
. . . . . . 7
|
| 10 | 7, 9 | mtbir 675 |
. . . . . 6
|
| 11 | eleq2 2293 |
. . . . . . 7
| |
| 12 | 3, 11 | mpbii 148 |
. . . . . 6
|
| 13 | 10, 12 | mto 666 |
. . . . 5
|
| 14 | 13 | neir 2403 |
. . . 4
|
| 15 | 4, 14 | nelpri 3690 |
. . 3
|
| 16 | df2o3 6576 |
. . . 4
| |
| 17 | 16 | eleq2i 2296 |
. . 3
|
| 18 | 15, 17 | mtbir 675 |
. 2
|
| 19 | pw1ne1 7414 |
. . . . . 6
| |
| 20 | 5, 19 | nelpri 3690 |
. . . . 5
|
| 21 | 16 | eleq2i 2296 |
. . . . 5
|
| 22 | 20, 21 | mtbir 675 |
. . . 4
|
| 23 | eleq2 2293 |
. . . . 5
| |
| 24 | 3, 23 | mpbii 148 |
. . . 4
|
| 25 | 22, 24 | mto 666 |
. . 3
|
| 26 | 2 | sucex 4591 |
. . . 4
|
| 27 | 26 | elsn 3682 |
. . 3
|
| 28 | 25, 27 | mtbir 675 |
. 2
|
| 29 | ioran 757 |
. . 3
| |
| 30 | df-3o 6564 |
. . . . . 6
| |
| 31 | df-suc 4462 |
. . . . . 6
| |
| 32 | 30, 31 | eqtri 2250 |
. . . . 5
|
| 33 | 32 | eleq2i 2296 |
. . . 4
|
| 34 | elun 3345 |
. . . 4
| |
| 35 | 33, 34 | bitri 184 |
. . 3
|
| 36 | 29, 35 | xchnxbir 685 |
. 2
|
| 37 | 18, 28, 36 | mpbir2an 948 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-tr 4183 df-iord 4457 df-on 4459 df-suc 4462 df-1o 6562 df-2o 6563 df-3o 6564 |
| This theorem is referenced by: onntri35 7422 |
| Copyright terms: Public domain | W3C validator |