ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucpw1nel3 Unicode version

Theorem sucpw1nel3 7379
Description: The successor of the power set of  1o is not an element of  3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
sucpw1nel3  |-  -.  suc  ~P 1o  e.  3o

Proof of Theorem sucpw1nel3
StepHypRef Expression
1 1oex 6533 . . . . . . 7  |-  1o  e.  _V
21pwex 4243 . . . . . 6  |-  ~P 1o  e.  _V
32sucid 4482 . . . . 5  |-  ~P 1o  e.  suc  ~P 1o
43ne0ii 3478 . . . 4  |-  suc  ~P 1o  =/=  (/)
5 pw1ne0 7374 . . . . . . . 8  |-  ~P 1o  =/=  (/)
62elsn 3659 . . . . . . . 8  |-  ( ~P 1o  e.  { (/) }  <->  ~P 1o  =  (/) )
75, 6nemtbir 2467 . . . . . . 7  |-  -.  ~P 1o  e.  { (/) }
8 df1o2 6538 . . . . . . . 8  |-  1o  =  { (/) }
98eleq2i 2274 . . . . . . 7  |-  ( ~P 1o  e.  1o  <->  ~P 1o  e.  { (/) } )
107, 9mtbir 673 . . . . . 6  |-  -.  ~P 1o  e.  1o
11 eleq2 2271 . . . . . . 7  |-  ( suc 
~P 1o  =  1o 
->  ( ~P 1o  e.  suc  ~P 1o  <->  ~P 1o  e.  1o ) )
123, 11mpbii 148 . . . . . 6  |-  ( suc 
~P 1o  =  1o 
->  ~P 1o  e.  1o )
1310, 12mto 664 . . . . 5  |-  -.  suc  ~P 1o  =  1o
1413neir 2381 . . . 4  |-  suc  ~P 1o  =/=  1o
154, 14nelpri 3667 . . 3  |-  -.  suc  ~P 1o  e.  { (/) ,  1o }
16 df2o3 6539 . . . 4  |-  2o  =  { (/) ,  1o }
1716eleq2i 2274 . . 3  |-  ( suc 
~P 1o  e.  2o  <->  suc 
~P 1o  e.  { (/)
,  1o } )
1815, 17mtbir 673 . 2  |-  -.  suc  ~P 1o  e.  2o
19 pw1ne1 7375 . . . . . 6  |-  ~P 1o  =/=  1o
205, 19nelpri 3667 . . . . 5  |-  -.  ~P 1o  e.  { (/) ,  1o }
2116eleq2i 2274 . . . . 5  |-  ( ~P 1o  e.  2o  <->  ~P 1o  e.  { (/) ,  1o }
)
2220, 21mtbir 673 . . . 4  |-  -.  ~P 1o  e.  2o
23 eleq2 2271 . . . . 5  |-  ( suc 
~P 1o  =  2o 
->  ( ~P 1o  e.  suc  ~P 1o  <->  ~P 1o  e.  2o ) )
243, 23mpbii 148 . . . 4  |-  ( suc 
~P 1o  =  2o 
->  ~P 1o  e.  2o )
2522, 24mto 664 . . 3  |-  -.  suc  ~P 1o  =  2o
262sucex 4565 . . . 4  |-  suc  ~P 1o  e.  _V
2726elsn 3659 . . 3  |-  ( suc 
~P 1o  e.  { 2o }  <->  suc  ~P 1o  =  2o )
2825, 27mtbir 673 . 2  |-  -.  suc  ~P 1o  e.  { 2o }
29 ioran 754 . . 3  |-  ( -.  ( suc  ~P 1o  e.  2o  \/  suc  ~P 1o  e.  { 2o }
)  <->  ( -.  suc  ~P 1o  e.  2o  /\  -.  suc  ~P 1o  e.  { 2o } ) )
30 df-3o 6527 . . . . . 6  |-  3o  =  suc  2o
31 df-suc 4436 . . . . . 6  |-  suc  2o  =  ( 2o  u.  { 2o } )
3230, 31eqtri 2228 . . . . 5  |-  3o  =  ( 2o  u.  { 2o } )
3332eleq2i 2274 . . . 4  |-  ( suc 
~P 1o  e.  3o  <->  suc 
~P 1o  e.  ( 2o  u.  { 2o } ) )
34 elun 3322 . . . 4  |-  ( suc 
~P 1o  e.  ( 2o  u.  { 2o } )  <->  ( suc  ~P 1o  e.  2o  \/  suc  ~P 1o  e.  { 2o } ) )
3533, 34bitri 184 . . 3  |-  ( suc 
~P 1o  e.  3o  <->  ( suc  ~P 1o  e.  2o  \/  suc  ~P 1o  e.  { 2o } ) )
3629, 35xchnxbir 683 . 2  |-  ( -. 
suc  ~P 1o  e.  3o  <->  ( -.  suc  ~P 1o  e.  2o  /\  -.  suc  ~P 1o  e.  { 2o } ) )
3718, 28, 36mpbir2an 945 1  |-  -.  suc  ~P 1o  e.  3o
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2178    u. cun 3172   (/)c0 3468   ~Pcpw 3626   {csn 3643   {cpr 3644   suc csuc 4430   1oc1o 6518   2oc2o 6519   3oc3o 6520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-tr 4159  df-iord 4431  df-on 4433  df-suc 4436  df-1o 6525  df-2o 6526  df-3o 6527
This theorem is referenced by:  onntri35  7383
  Copyright terms: Public domain W3C validator