Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sucpw1nel3 | Unicode version |
Description: The successor of the power set of is not an element of . (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
Ref | Expression |
---|---|
sucpw1nel3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 6368 | . . . . . . 7 | |
2 | 1 | pwex 4144 | . . . . . 6 |
3 | 2 | sucid 4377 | . . . . 5 |
4 | 3 | ne0ii 3403 | . . . 4 |
5 | pw1ne0 7157 | . . . . . . . 8 | |
6 | 2 | elsn 3576 | . . . . . . . 8 |
7 | 5, 6 | nemtbir 2416 | . . . . . . 7 |
8 | df1o2 6373 | . . . . . . . 8 | |
9 | 8 | eleq2i 2224 | . . . . . . 7 |
10 | 7, 9 | mtbir 661 | . . . . . 6 |
11 | eleq2 2221 | . . . . . . 7 | |
12 | 3, 11 | mpbii 147 | . . . . . 6 |
13 | 10, 12 | mto 652 | . . . . 5 |
14 | 13 | neir 2330 | . . . 4 |
15 | 4, 14 | nelpri 3584 | . . 3 |
16 | df2o3 6374 | . . . 4 | |
17 | 16 | eleq2i 2224 | . . 3 |
18 | 15, 17 | mtbir 661 | . 2 |
19 | pw1ne1 7158 | . . . . . 6 | |
20 | 5, 19 | nelpri 3584 | . . . . 5 |
21 | 16 | eleq2i 2224 | . . . . 5 |
22 | 20, 21 | mtbir 661 | . . . 4 |
23 | eleq2 2221 | . . . . 5 | |
24 | 3, 23 | mpbii 147 | . . . 4 |
25 | 22, 24 | mto 652 | . . 3 |
26 | 2 | sucex 4457 | . . . 4 |
27 | 26 | elsn 3576 | . . 3 |
28 | 25, 27 | mtbir 661 | . 2 |
29 | ioran 742 | . . 3 | |
30 | df-3o 6362 | . . . . . 6 | |
31 | df-suc 4331 | . . . . . 6 | |
32 | 30, 31 | eqtri 2178 | . . . . 5 |
33 | 32 | eleq2i 2224 | . . . 4 |
34 | elun 3248 | . . . 4 | |
35 | 33, 34 | bitri 183 | . . 3 |
36 | 29, 35 | xchnxbir 671 | . 2 |
37 | 18, 28, 36 | mpbir2an 927 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wo 698 wceq 1335 wcel 2128 cun 3100 c0 3394 cpw 3543 csn 3560 cpr 3561 csuc 4325 c1o 6353 c2o 6354 c3o 6355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-uni 3773 df-tr 4063 df-iord 4326 df-on 4328 df-suc 4331 df-1o 6360 df-2o 6361 df-3o 6362 |
This theorem is referenced by: onntri35 7166 |
Copyright terms: Public domain | W3C validator |