| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucpw1nel3 | Unicode version | ||
| Description: The successor of the
power set of |
| Ref | Expression |
|---|---|
| sucpw1nel3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 6533 |
. . . . . . 7
| |
| 2 | 1 | pwex 4243 |
. . . . . 6
|
| 3 | 2 | sucid 4482 |
. . . . 5
|
| 4 | 3 | ne0ii 3478 |
. . . 4
|
| 5 | pw1ne0 7374 |
. . . . . . . 8
| |
| 6 | 2 | elsn 3659 |
. . . . . . . 8
|
| 7 | 5, 6 | nemtbir 2467 |
. . . . . . 7
|
| 8 | df1o2 6538 |
. . . . . . . 8
| |
| 9 | 8 | eleq2i 2274 |
. . . . . . 7
|
| 10 | 7, 9 | mtbir 673 |
. . . . . 6
|
| 11 | eleq2 2271 |
. . . . . . 7
| |
| 12 | 3, 11 | mpbii 148 |
. . . . . 6
|
| 13 | 10, 12 | mto 664 |
. . . . 5
|
| 14 | 13 | neir 2381 |
. . . 4
|
| 15 | 4, 14 | nelpri 3667 |
. . 3
|
| 16 | df2o3 6539 |
. . . 4
| |
| 17 | 16 | eleq2i 2274 |
. . 3
|
| 18 | 15, 17 | mtbir 673 |
. 2
|
| 19 | pw1ne1 7375 |
. . . . . 6
| |
| 20 | 5, 19 | nelpri 3667 |
. . . . 5
|
| 21 | 16 | eleq2i 2274 |
. . . . 5
|
| 22 | 20, 21 | mtbir 673 |
. . . 4
|
| 23 | eleq2 2271 |
. . . . 5
| |
| 24 | 3, 23 | mpbii 148 |
. . . 4
|
| 25 | 22, 24 | mto 664 |
. . 3
|
| 26 | 2 | sucex 4565 |
. . . 4
|
| 27 | 26 | elsn 3659 |
. . 3
|
| 28 | 25, 27 | mtbir 673 |
. 2
|
| 29 | ioran 754 |
. . 3
| |
| 30 | df-3o 6527 |
. . . . . 6
| |
| 31 | df-suc 4436 |
. . . . . 6
| |
| 32 | 30, 31 | eqtri 2228 |
. . . . 5
|
| 33 | 32 | eleq2i 2274 |
. . . 4
|
| 34 | elun 3322 |
. . . 4
| |
| 35 | 33, 34 | bitri 184 |
. . 3
|
| 36 | 29, 35 | xchnxbir 683 |
. 2
|
| 37 | 18, 28, 36 | mpbir2an 945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-tr 4159 df-iord 4431 df-on 4433 df-suc 4436 df-1o 6525 df-2o 6526 df-3o 6527 |
| This theorem is referenced by: onntri35 7383 |
| Copyright terms: Public domain | W3C validator |