| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucpw1nel3 | Unicode version | ||
| Description: The successor of the
power set of |
| Ref | Expression |
|---|---|
| sucpw1nel3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 6512 |
. . . . . . 7
| |
| 2 | 1 | pwex 4228 |
. . . . . 6
|
| 3 | 2 | sucid 4465 |
. . . . 5
|
| 4 | 3 | ne0ii 3470 |
. . . 4
|
| 5 | pw1ne0 7342 |
. . . . . . . 8
| |
| 6 | 2 | elsn 3649 |
. . . . . . . 8
|
| 7 | 5, 6 | nemtbir 2465 |
. . . . . . 7
|
| 8 | df1o2 6517 |
. . . . . . . 8
| |
| 9 | 8 | eleq2i 2272 |
. . . . . . 7
|
| 10 | 7, 9 | mtbir 673 |
. . . . . 6
|
| 11 | eleq2 2269 |
. . . . . . 7
| |
| 12 | 3, 11 | mpbii 148 |
. . . . . 6
|
| 13 | 10, 12 | mto 664 |
. . . . 5
|
| 14 | 13 | neir 2379 |
. . . 4
|
| 15 | 4, 14 | nelpri 3657 |
. . 3
|
| 16 | df2o3 6518 |
. . . 4
| |
| 17 | 16 | eleq2i 2272 |
. . 3
|
| 18 | 15, 17 | mtbir 673 |
. 2
|
| 19 | pw1ne1 7343 |
. . . . . 6
| |
| 20 | 5, 19 | nelpri 3657 |
. . . . 5
|
| 21 | 16 | eleq2i 2272 |
. . . . 5
|
| 22 | 20, 21 | mtbir 673 |
. . . 4
|
| 23 | eleq2 2269 |
. . . . 5
| |
| 24 | 3, 23 | mpbii 148 |
. . . 4
|
| 25 | 22, 24 | mto 664 |
. . 3
|
| 26 | 2 | sucex 4548 |
. . . 4
|
| 27 | 26 | elsn 3649 |
. . 3
|
| 28 | 25, 27 | mtbir 673 |
. 2
|
| 29 | ioran 754 |
. . 3
| |
| 30 | df-3o 6506 |
. . . . . 6
| |
| 31 | df-suc 4419 |
. . . . . 6
| |
| 32 | 30, 31 | eqtri 2226 |
. . . . 5
|
| 33 | 32 | eleq2i 2272 |
. . . 4
|
| 34 | elun 3314 |
. . . 4
| |
| 35 | 33, 34 | bitri 184 |
. . 3
|
| 36 | 29, 35 | xchnxbir 683 |
. 2
|
| 37 | 18, 28, 36 | mpbir2an 945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-tr 4144 df-iord 4414 df-on 4416 df-suc 4419 df-1o 6504 df-2o 6505 df-3o 6506 |
| This theorem is referenced by: onntri35 7351 |
| Copyright terms: Public domain | W3C validator |