ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucpw1nel3 Unicode version

Theorem sucpw1nel3 7418
Description: The successor of the power set of  1o is not an element of  3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
sucpw1nel3  |-  -.  suc  ~P 1o  e.  3o

Proof of Theorem sucpw1nel3
StepHypRef Expression
1 1oex 6570 . . . . . . 7  |-  1o  e.  _V
21pwex 4267 . . . . . 6  |-  ~P 1o  e.  _V
32sucid 4508 . . . . 5  |-  ~P 1o  e.  suc  ~P 1o
43ne0ii 3501 . . . 4  |-  suc  ~P 1o  =/=  (/)
5 pw1ne0 7413 . . . . . . . 8  |-  ~P 1o  =/=  (/)
62elsn 3682 . . . . . . . 8  |-  ( ~P 1o  e.  { (/) }  <->  ~P 1o  =  (/) )
75, 6nemtbir 2489 . . . . . . 7  |-  -.  ~P 1o  e.  { (/) }
8 df1o2 6575 . . . . . . . 8  |-  1o  =  { (/) }
98eleq2i 2296 . . . . . . 7  |-  ( ~P 1o  e.  1o  <->  ~P 1o  e.  { (/) } )
107, 9mtbir 675 . . . . . 6  |-  -.  ~P 1o  e.  1o
11 eleq2 2293 . . . . . . 7  |-  ( suc 
~P 1o  =  1o 
->  ( ~P 1o  e.  suc  ~P 1o  <->  ~P 1o  e.  1o ) )
123, 11mpbii 148 . . . . . 6  |-  ( suc 
~P 1o  =  1o 
->  ~P 1o  e.  1o )
1310, 12mto 666 . . . . 5  |-  -.  suc  ~P 1o  =  1o
1413neir 2403 . . . 4  |-  suc  ~P 1o  =/=  1o
154, 14nelpri 3690 . . 3  |-  -.  suc  ~P 1o  e.  { (/) ,  1o }
16 df2o3 6576 . . . 4  |-  2o  =  { (/) ,  1o }
1716eleq2i 2296 . . 3  |-  ( suc 
~P 1o  e.  2o  <->  suc 
~P 1o  e.  { (/)
,  1o } )
1815, 17mtbir 675 . 2  |-  -.  suc  ~P 1o  e.  2o
19 pw1ne1 7414 . . . . . 6  |-  ~P 1o  =/=  1o
205, 19nelpri 3690 . . . . 5  |-  -.  ~P 1o  e.  { (/) ,  1o }
2116eleq2i 2296 . . . . 5  |-  ( ~P 1o  e.  2o  <->  ~P 1o  e.  { (/) ,  1o }
)
2220, 21mtbir 675 . . . 4  |-  -.  ~P 1o  e.  2o
23 eleq2 2293 . . . . 5  |-  ( suc 
~P 1o  =  2o 
->  ( ~P 1o  e.  suc  ~P 1o  <->  ~P 1o  e.  2o ) )
243, 23mpbii 148 . . . 4  |-  ( suc 
~P 1o  =  2o 
->  ~P 1o  e.  2o )
2522, 24mto 666 . . 3  |-  -.  suc  ~P 1o  =  2o
262sucex 4591 . . . 4  |-  suc  ~P 1o  e.  _V
2726elsn 3682 . . 3  |-  ( suc 
~P 1o  e.  { 2o }  <->  suc  ~P 1o  =  2o )
2825, 27mtbir 675 . 2  |-  -.  suc  ~P 1o  e.  { 2o }
29 ioran 757 . . 3  |-  ( -.  ( suc  ~P 1o  e.  2o  \/  suc  ~P 1o  e.  { 2o }
)  <->  ( -.  suc  ~P 1o  e.  2o  /\  -.  suc  ~P 1o  e.  { 2o } ) )
30 df-3o 6564 . . . . . 6  |-  3o  =  suc  2o
31 df-suc 4462 . . . . . 6  |-  suc  2o  =  ( 2o  u.  { 2o } )
3230, 31eqtri 2250 . . . . 5  |-  3o  =  ( 2o  u.  { 2o } )
3332eleq2i 2296 . . . 4  |-  ( suc 
~P 1o  e.  3o  <->  suc 
~P 1o  e.  ( 2o  u.  { 2o } ) )
34 elun 3345 . . . 4  |-  ( suc 
~P 1o  e.  ( 2o  u.  { 2o } )  <->  ( suc  ~P 1o  e.  2o  \/  suc  ~P 1o  e.  { 2o } ) )
3533, 34bitri 184 . . 3  |-  ( suc 
~P 1o  e.  3o  <->  ( suc  ~P 1o  e.  2o  \/  suc  ~P 1o  e.  { 2o } ) )
3629, 35xchnxbir 685 . 2  |-  ( -. 
suc  ~P 1o  e.  3o  <->  ( -.  suc  ~P 1o  e.  2o  /\  -.  suc  ~P 1o  e.  { 2o } ) )
3718, 28, 36mpbir2an 948 1  |-  -.  suc  ~P 1o  e.  3o
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    \/ wo 713    = wceq 1395    e. wcel 2200    u. cun 3195   (/)c0 3491   ~Pcpw 3649   {csn 3666   {cpr 3667   suc csuc 4456   1oc1o 6555   2oc2o 6556   3oc3o 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-tr 4183  df-iord 4457  df-on 4459  df-suc 4462  df-1o 6562  df-2o 6563  df-3o 6564
This theorem is referenced by:  onntri35  7422
  Copyright terms: Public domain W3C validator