![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sucpw1nel3 | Unicode version |
Description: The successor of the
power set of ![]() ![]() |
Ref | Expression |
---|---|
sucpw1nel3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 6427 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
2 | 1 | pwex 4185 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() |
3 | 2 | sucid 4419 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | ne0ii 3434 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
5 | pw1ne0 7229 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() | |
6 | 2 | elsn 3610 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 5, 6 | nemtbir 2436 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | df1o2 6432 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 8 | eleq2i 2244 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 7, 9 | mtbir 671 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() |
11 | eleq2 2241 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | 3, 11 | mpbii 148 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 10, 12 | mto 662 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 13 | neir 2350 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
15 | 4, 14 | nelpri 3618 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | df2o3 6433 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | 16 | eleq2i 2244 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 15, 17 | mtbir 671 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | pw1ne1 7230 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() | |
20 | 5, 19 | nelpri 3618 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 16 | eleq2i 2244 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 20, 21 | mtbir 671 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
23 | eleq2 2241 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
24 | 3, 23 | mpbii 148 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 22, 24 | mto 662 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | 2 | sucex 4500 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
27 | 26 | elsn 3610 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 25, 27 | mtbir 671 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | ioran 752 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
30 | df-3o 6421 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() | |
31 | df-suc 4373 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
32 | 30, 31 | eqtri 2198 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 32 | eleq2i 2244 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | elun 3278 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
35 | 33, 34 | bitri 184 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | 29, 35 | xchnxbir 681 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | 18, 28, 36 | mpbir2an 942 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-uni 3812 df-tr 4104 df-iord 4368 df-on 4370 df-suc 4373 df-1o 6419 df-2o 6420 df-3o 6421 |
This theorem is referenced by: onntri35 7238 |
Copyright terms: Public domain | W3C validator |