ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucpw1nel3 Unicode version

Theorem sucpw1nel3 7300
Description: The successor of the power set of  1o is not an element of  3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
sucpw1nel3  |-  -.  suc  ~P 1o  e.  3o

Proof of Theorem sucpw1nel3
StepHypRef Expression
1 1oex 6482 . . . . . . 7  |-  1o  e.  _V
21pwex 4216 . . . . . 6  |-  ~P 1o  e.  _V
32sucid 4452 . . . . 5  |-  ~P 1o  e.  suc  ~P 1o
43ne0ii 3460 . . . 4  |-  suc  ~P 1o  =/=  (/)
5 pw1ne0 7295 . . . . . . . 8  |-  ~P 1o  =/=  (/)
62elsn 3638 . . . . . . . 8  |-  ( ~P 1o  e.  { (/) }  <->  ~P 1o  =  (/) )
75, 6nemtbir 2456 . . . . . . 7  |-  -.  ~P 1o  e.  { (/) }
8 df1o2 6487 . . . . . . . 8  |-  1o  =  { (/) }
98eleq2i 2263 . . . . . . 7  |-  ( ~P 1o  e.  1o  <->  ~P 1o  e.  { (/) } )
107, 9mtbir 672 . . . . . 6  |-  -.  ~P 1o  e.  1o
11 eleq2 2260 . . . . . . 7  |-  ( suc 
~P 1o  =  1o 
->  ( ~P 1o  e.  suc  ~P 1o  <->  ~P 1o  e.  1o ) )
123, 11mpbii 148 . . . . . 6  |-  ( suc 
~P 1o  =  1o 
->  ~P 1o  e.  1o )
1310, 12mto 663 . . . . 5  |-  -.  suc  ~P 1o  =  1o
1413neir 2370 . . . 4  |-  suc  ~P 1o  =/=  1o
154, 14nelpri 3646 . . 3  |-  -.  suc  ~P 1o  e.  { (/) ,  1o }
16 df2o3 6488 . . . 4  |-  2o  =  { (/) ,  1o }
1716eleq2i 2263 . . 3  |-  ( suc 
~P 1o  e.  2o  <->  suc 
~P 1o  e.  { (/)
,  1o } )
1815, 17mtbir 672 . 2  |-  -.  suc  ~P 1o  e.  2o
19 pw1ne1 7296 . . . . . 6  |-  ~P 1o  =/=  1o
205, 19nelpri 3646 . . . . 5  |-  -.  ~P 1o  e.  { (/) ,  1o }
2116eleq2i 2263 . . . . 5  |-  ( ~P 1o  e.  2o  <->  ~P 1o  e.  { (/) ,  1o }
)
2220, 21mtbir 672 . . . 4  |-  -.  ~P 1o  e.  2o
23 eleq2 2260 . . . . 5  |-  ( suc 
~P 1o  =  2o 
->  ( ~P 1o  e.  suc  ~P 1o  <->  ~P 1o  e.  2o ) )
243, 23mpbii 148 . . . 4  |-  ( suc 
~P 1o  =  2o 
->  ~P 1o  e.  2o )
2522, 24mto 663 . . 3  |-  -.  suc  ~P 1o  =  2o
262sucex 4535 . . . 4  |-  suc  ~P 1o  e.  _V
2726elsn 3638 . . 3  |-  ( suc 
~P 1o  e.  { 2o }  <->  suc  ~P 1o  =  2o )
2825, 27mtbir 672 . 2  |-  -.  suc  ~P 1o  e.  { 2o }
29 ioran 753 . . 3  |-  ( -.  ( suc  ~P 1o  e.  2o  \/  suc  ~P 1o  e.  { 2o }
)  <->  ( -.  suc  ~P 1o  e.  2o  /\  -.  suc  ~P 1o  e.  { 2o } ) )
30 df-3o 6476 . . . . . 6  |-  3o  =  suc  2o
31 df-suc 4406 . . . . . 6  |-  suc  2o  =  ( 2o  u.  { 2o } )
3230, 31eqtri 2217 . . . . 5  |-  3o  =  ( 2o  u.  { 2o } )
3332eleq2i 2263 . . . 4  |-  ( suc 
~P 1o  e.  3o  <->  suc 
~P 1o  e.  ( 2o  u.  { 2o } ) )
34 elun 3304 . . . 4  |-  ( suc 
~P 1o  e.  ( 2o  u.  { 2o } )  <->  ( suc  ~P 1o  e.  2o  \/  suc  ~P 1o  e.  { 2o } ) )
3533, 34bitri 184 . . 3  |-  ( suc 
~P 1o  e.  3o  <->  ( suc  ~P 1o  e.  2o  \/  suc  ~P 1o  e.  { 2o } ) )
3629, 35xchnxbir 682 . 2  |-  ( -. 
suc  ~P 1o  e.  3o  <->  ( -.  suc  ~P 1o  e.  2o  /\  -.  suc  ~P 1o  e.  { 2o } ) )
3718, 28, 36mpbir2an 944 1  |-  -.  suc  ~P 1o  e.  3o
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167    u. cun 3155   (/)c0 3450   ~Pcpw 3605   {csn 3622   {cpr 3623   suc csuc 4400   1oc1o 6467   2oc2o 6468   3oc3o 6469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406  df-1o 6474  df-2o 6475  df-3o 6476
This theorem is referenced by:  onntri35  7304
  Copyright terms: Public domain W3C validator