![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sucpw1nel3 | Unicode version |
Description: The successor of the
power set of ![]() ![]() |
Ref | Expression |
---|---|
sucpw1nel3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 6443 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
2 | 1 | pwex 4198 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() |
3 | 2 | sucid 4432 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | ne0ii 3447 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
5 | pw1ne0 7245 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() | |
6 | 2 | elsn 3623 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 5, 6 | nemtbir 2449 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | df1o2 6448 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 8 | eleq2i 2256 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 7, 9 | mtbir 672 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() |
11 | eleq2 2253 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | 3, 11 | mpbii 148 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 10, 12 | mto 663 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 13 | neir 2363 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
15 | 4, 14 | nelpri 3631 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | df2o3 6449 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | 16 | eleq2i 2256 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 15, 17 | mtbir 672 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | pw1ne1 7246 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() | |
20 | 5, 19 | nelpri 3631 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 16 | eleq2i 2256 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 20, 21 | mtbir 672 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
23 | eleq2 2253 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
24 | 3, 23 | mpbii 148 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 22, 24 | mto 663 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | 2 | sucex 4513 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
27 | 26 | elsn 3623 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 25, 27 | mtbir 672 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | ioran 753 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
30 | df-3o 6437 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() | |
31 | df-suc 4386 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
32 | 30, 31 | eqtri 2210 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 32 | eleq2i 2256 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | elun 3291 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
35 | 33, 34 | bitri 184 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | 29, 35 | xchnxbir 682 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | 18, 28, 36 | mpbir2an 944 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-uni 3825 df-tr 4117 df-iord 4381 df-on 4383 df-suc 4386 df-1o 6435 df-2o 6436 df-3o 6437 |
This theorem is referenced by: onntri35 7254 |
Copyright terms: Public domain | W3C validator |