Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sucpw1nel3 | Unicode version |
Description: The successor of the power set of is not an element of . (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
Ref | Expression |
---|---|
sucpw1nel3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 6403 | . . . . . . 7 | |
2 | 1 | pwex 4169 | . . . . . 6 |
3 | 2 | sucid 4402 | . . . . 5 |
4 | 3 | ne0ii 3424 | . . . 4 |
5 | pw1ne0 7205 | . . . . . . . 8 | |
6 | 2 | elsn 3599 | . . . . . . . 8 |
7 | 5, 6 | nemtbir 2429 | . . . . . . 7 |
8 | df1o2 6408 | . . . . . . . 8 | |
9 | 8 | eleq2i 2237 | . . . . . . 7 |
10 | 7, 9 | mtbir 666 | . . . . . 6 |
11 | eleq2 2234 | . . . . . . 7 | |
12 | 3, 11 | mpbii 147 | . . . . . 6 |
13 | 10, 12 | mto 657 | . . . . 5 |
14 | 13 | neir 2343 | . . . 4 |
15 | 4, 14 | nelpri 3607 | . . 3 |
16 | df2o3 6409 | . . . 4 | |
17 | 16 | eleq2i 2237 | . . 3 |
18 | 15, 17 | mtbir 666 | . 2 |
19 | pw1ne1 7206 | . . . . . 6 | |
20 | 5, 19 | nelpri 3607 | . . . . 5 |
21 | 16 | eleq2i 2237 | . . . . 5 |
22 | 20, 21 | mtbir 666 | . . . 4 |
23 | eleq2 2234 | . . . . 5 | |
24 | 3, 23 | mpbii 147 | . . . 4 |
25 | 22, 24 | mto 657 | . . 3 |
26 | 2 | sucex 4483 | . . . 4 |
27 | 26 | elsn 3599 | . . 3 |
28 | 25, 27 | mtbir 666 | . 2 |
29 | ioran 747 | . . 3 | |
30 | df-3o 6397 | . . . . . 6 | |
31 | df-suc 4356 | . . . . . 6 | |
32 | 30, 31 | eqtri 2191 | . . . . 5 |
33 | 32 | eleq2i 2237 | . . . 4 |
34 | elun 3268 | . . . 4 | |
35 | 33, 34 | bitri 183 | . . 3 |
36 | 29, 35 | xchnxbir 676 | . 2 |
37 | 18, 28, 36 | mpbir2an 937 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wo 703 wceq 1348 wcel 2141 cun 3119 c0 3414 cpw 3566 csn 3583 cpr 3584 csuc 4350 c1o 6388 c2o 6389 c3o 6390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 df-1o 6395 df-2o 6396 df-3o 6397 |
This theorem is referenced by: onntri35 7214 |
Copyright terms: Public domain | W3C validator |