ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xchnxbir GIF version

Theorem xchnxbir 671
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
Hypotheses
Ref Expression
xchnxbir.1 𝜑𝜓)
xchnxbir.2 (𝜒𝜑)
Assertion
Ref Expression
xchnxbir 𝜒𝜓)

Proof of Theorem xchnxbir
StepHypRef Expression
1 xchnxbir.1 . 2 𝜑𝜓)
2 xchnxbir.2 . . 3 (𝜒𝜑)
32bicomi 131 . 2 (𝜑𝜒)
41, 3xchnxbi 670 1 𝜒𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  3ioran  983  truxortru  1409  truxorfal  1410  falxortru  1411  falxorfal  1412  intirr  4990  sucpw1nel3  7189  hashunlem  10717
  Copyright terms: Public domain W3C validator