![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xchnxbir | GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchnxbir.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
xchnxbir.2 | ⊢ (𝜒 ↔ 𝜑) |
Ref | Expression |
---|---|
xchnxbir | ⊢ (¬ 𝜒 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchnxbir.1 | . 2 ⊢ (¬ 𝜑 ↔ 𝜓) | |
2 | xchnxbir.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
3 | 2 | bicomi 132 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 1, 3 | xchnxbi 680 | 1 ⊢ (¬ 𝜒 ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3ioran 993 truxortru 1419 truxorfal 1420 falxortru 1421 falxorfal 1422 intirr 5017 sucpw1nel3 7235 hashunlem 10787 |
Copyright terms: Public domain | W3C validator |