ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitr3di Unicode version

Theorem bitr3di 195
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.)
Hypotheses
Ref Expression
bitr3di.1  |-  ( ph  ->  ( ps  <->  ch )
)
bitr3di.2  |-  ( ps  <->  th )
Assertion
Ref Expression
bitr3di  |-  ( ph  ->  ( ch  <->  th )
)

Proof of Theorem bitr3di
StepHypRef Expression
1 bitr3di.2 . . 3  |-  ( ps  <->  th )
21bicomi 132 . 2  |-  ( th  <->  ps )
3 bitr3di.1 . 2  |-  ( ph  ->  ( ps  <->  ch )
)
42, 3bitr2id 193 1  |-  ( ph  ->  ( ch  <->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  xordc  1392  sbal2  2020  eqsnm  3756  fnressn  5703  fressnfv  5704  eluniimadm  5766  genpassl  7523  genpassu  7524  1idprl  7589  1idpru  7590  axcaucvglemres  7898  negeq0  8211  muleqadd  8625  crap0  8915  addltmul  9155  fzrev  10084  modq0  10329  cjap0  10916  cjne0  10917  caucvgrelemrec  10988  lenegsq  11104  isumss  11399  fsumsplit  11415  sumsplitdc  11440  dvdsabseq  11853  pceu  12295  oddennn  12393  xpsfrnel  12763  metrest  14009  elabgf0  14532
  Copyright terms: Public domain W3C validator