![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr3di | Unicode version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
bitr3di.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bitr3di.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bitr3di |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3di.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | bicomi 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | bitr3di.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | bitr2id 193 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: xordc 1403 sbal2 2036 eqsnm 3781 fnressn 5744 fressnfv 5745 eluniimadm 5808 genpassl 7584 genpassu 7585 1idprl 7650 1idpru 7651 axcaucvglemres 7959 negeq0 8273 muleqadd 8687 crap0 8977 addltmul 9219 fzrev 10150 modq0 10400 cjap0 11051 cjne0 11052 caucvgrelemrec 11123 lenegsq 11239 isumss 11534 fsumsplit 11550 sumsplitdc 11575 dvdsabseq 11989 pceu 12433 oddennn 12549 xpsfrnel 12927 metrest 14674 elabgf0 15269 |
Copyright terms: Public domain | W3C validator |