| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3di | Unicode version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| bitr3di.1 |
|
| bitr3di.2 |
|
| Ref | Expression |
|---|---|
| bitr3di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3di.2 |
. . 3
| |
| 2 | 1 | bicomi 132 |
. 2
|
| 3 | bitr3di.1 |
. 2
| |
| 4 | 2, 3 | bitr2id 193 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: xordc 1434 sbal2 2071 eqsnm 3832 fnressn 5824 fressnfv 5825 eluniimadm 5888 iftrueb01 7404 genpassl 7707 genpassu 7708 1idprl 7773 1idpru 7774 axcaucvglemres 8082 negeq0 8396 muleqadd 8811 crap0 9101 addltmul 9344 fzrev 10276 modq0 10546 cjap0 11413 cjne0 11414 caucvgrelemrec 11485 lenegsq 11601 isumss 11897 fsumsplit 11913 sumsplitdc 11938 dvdsabseq 12353 pceu 12813 oddennn 12958 xpsfrnel 13372 metrest 15174 elabgf0 16099 |
| Copyright terms: Public domain | W3C validator |