![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr3di | Unicode version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
bitr3di.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bitr3di.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bitr3di |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3di.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | bicomi 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | bitr3di.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | bitr2id 193 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: xordc 1403 sbal2 2032 eqsnm 3770 fnressn 5723 fressnfv 5724 eluniimadm 5787 genpassl 7553 genpassu 7554 1idprl 7619 1idpru 7620 axcaucvglemres 7928 negeq0 8241 muleqadd 8655 crap0 8945 addltmul 9185 fzrev 10114 modq0 10360 cjap0 10948 cjne0 10949 caucvgrelemrec 11020 lenegsq 11136 isumss 11431 fsumsplit 11447 sumsplitdc 11472 dvdsabseq 11885 pceu 12327 oddennn 12443 xpsfrnel 12820 metrest 14463 elabgf0 14987 |
Copyright terms: Public domain | W3C validator |