| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3di | Unicode version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| bitr3di.1 |
|
| bitr3di.2 |
|
| Ref | Expression |
|---|---|
| bitr3di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3di.2 |
. . 3
| |
| 2 | 1 | bicomi 132 |
. 2
|
| 3 | bitr3di.1 |
. 2
| |
| 4 | 2, 3 | bitr2id 193 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: xordc 1412 sbal2 2049 eqsnm 3802 fnressn 5783 fressnfv 5784 eluniimadm 5847 iftrueb01 7354 genpassl 7657 genpassu 7658 1idprl 7723 1idpru 7724 axcaucvglemres 8032 negeq0 8346 muleqadd 8761 crap0 9051 addltmul 9294 fzrev 10226 modq0 10496 cjap0 11293 cjne0 11294 caucvgrelemrec 11365 lenegsq 11481 isumss 11777 fsumsplit 11793 sumsplitdc 11818 dvdsabseq 12233 pceu 12693 oddennn 12838 xpsfrnel 13251 metrest 15053 elabgf0 15852 |
| Copyright terms: Public domain | W3C validator |