| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3di | Unicode version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| bitr3di.1 |
|
| bitr3di.2 |
|
| Ref | Expression |
|---|---|
| bitr3di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3di.2 |
. . 3
| |
| 2 | 1 | bicomi 132 |
. 2
|
| 3 | bitr3di.1 |
. 2
| |
| 4 | 2, 3 | bitr2id 193 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: xordc 1403 sbal2 2039 eqsnm 3785 fnressn 5748 fressnfv 5749 eluniimadm 5812 genpassl 7591 genpassu 7592 1idprl 7657 1idpru 7658 axcaucvglemres 7966 negeq0 8280 muleqadd 8695 crap0 8985 addltmul 9228 fzrev 10159 modq0 10421 cjap0 11072 cjne0 11073 caucvgrelemrec 11144 lenegsq 11260 isumss 11556 fsumsplit 11572 sumsplitdc 11597 dvdsabseq 12012 pceu 12464 oddennn 12609 xpsfrnel 12987 metrest 14742 elabgf0 15423 |
| Copyright terms: Public domain | W3C validator |