ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitr3di Unicode version

Theorem bitr3di 195
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.)
Hypotheses
Ref Expression
bitr3di.1  |-  ( ph  ->  ( ps  <->  ch )
)
bitr3di.2  |-  ( ps  <->  th )
Assertion
Ref Expression
bitr3di  |-  ( ph  ->  ( ch  <->  th )
)

Proof of Theorem bitr3di
StepHypRef Expression
1 bitr3di.2 . . 3  |-  ( ps  <->  th )
21bicomi 132 . 2  |-  ( th  <->  ps )
3 bitr3di.1 . 2  |-  ( ph  ->  ( ps  <->  ch )
)
42, 3bitr2id 193 1  |-  ( ph  ->  ( ch  <->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  xordc  1412  sbal2  2049  eqsnm  3802  fnressn  5783  fressnfv  5784  eluniimadm  5847  iftrueb01  7354  genpassl  7657  genpassu  7658  1idprl  7723  1idpru  7724  axcaucvglemres  8032  negeq0  8346  muleqadd  8761  crap0  9051  addltmul  9294  fzrev  10226  modq0  10496  cjap0  11293  cjne0  11294  caucvgrelemrec  11365  lenegsq  11481  isumss  11777  fsumsplit  11793  sumsplitdc  11818  dvdsabseq  12233  pceu  12693  oddennn  12838  xpsfrnel  13251  metrest  15053  elabgf0  15852
  Copyright terms: Public domain W3C validator