| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3di | Unicode version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| bitr3di.1 |
|
| bitr3di.2 |
|
| Ref | Expression |
|---|---|
| bitr3di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3di.2 |
. . 3
| |
| 2 | 1 | bicomi 132 |
. 2
|
| 3 | bitr3di.1 |
. 2
| |
| 4 | 2, 3 | bitr2id 193 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: xordc 1403 sbal2 2039 eqsnm 3786 fnressn 5749 fressnfv 5750 eluniimadm 5813 genpassl 7593 genpassu 7594 1idprl 7659 1idpru 7660 axcaucvglemres 7968 negeq0 8282 muleqadd 8697 crap0 8987 addltmul 9230 fzrev 10161 modq0 10423 cjap0 11074 cjne0 11075 caucvgrelemrec 11146 lenegsq 11262 isumss 11558 fsumsplit 11574 sumsplitdc 11599 dvdsabseq 12014 pceu 12474 oddennn 12619 xpsfrnel 12997 metrest 14752 elabgf0 15433 |
| Copyright terms: Public domain | W3C validator |