ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfinf2 Unicode version

Theorem zfinf2 4566
Description: A standard version of the Axiom of Infinity, using definitions to abbreviate. Axiom Inf of [BellMachover] p. 472. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
zfinf2  |-  E. x
( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )
Distinct variable group:    x, y

Proof of Theorem zfinf2
StepHypRef Expression
1 ax-iinf 4565 . 2  |-  E. x
( (/)  e.  x  /\  A. y ( y  e.  x  ->  suc  y  e.  x ) )
2 df-ral 2449 . . . 4  |-  ( A. y  e.  x  suc  y  e.  x  <->  A. y
( y  e.  x  ->  suc  y  e.  x
) )
32anbi2i 453 . . 3  |-  ( (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  <->  (
(/)  e.  x  /\  A. y ( y  e.  x  ->  suc  y  e.  x ) ) )
43exbii 1593 . 2  |-  ( E. x ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  <->  E. x ( (/)  e.  x  /\  A. y
( y  e.  x  ->  suc  y  e.  x
) ) )
51, 4mpbir 145 1  |-  E. x
( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341   E.wex 1480    e. wcel 2136   A.wral 2444   (/)c0 3409   suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-ral 2449
This theorem is referenced by:  omex  4570
  Copyright terms: Public domain W3C validator