| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > zfinf2 | Unicode version | ||
| Description: A standard version of the Axiom of Infinity, using definitions to abbreviate. Axiom Inf of [BellMachover] p. 472. (Contributed by NM, 30-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| zfinf2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-iinf 4624 | 
. 2
 | |
| 2 | df-ral 2480 | 
. . . 4
 | |
| 3 | 2 | anbi2i 457 | 
. . 3
 | 
| 4 | 3 | exbii 1619 | 
. 2
 | 
| 5 | 1, 4 | mpbir 146 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-ral 2480 | 
| This theorem is referenced by: omex 4629 | 
| Copyright terms: Public domain | W3C validator |