| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > omex | Unicode version | ||
| Description: The existence of omega (the class of natural numbers). Axiom 7 of [TakeutiZaring] p. 43. (Contributed by NM, 6-Aug-1994.) |
| Ref | Expression |
|---|---|
| omex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfinf2 4637 |
. . 3
| |
| 2 | intexabim 4196 |
. . 3
| |
| 3 | 1, 2 | ax-mp 5 |
. 2
|
| 4 | dfom3 4640 |
. . 3
| |
| 5 | 4 | eleq1i 2271 |
. 2
|
| 6 | 3, 5 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-in 3172 df-ss 3179 df-int 3886 df-iom 4639 |
| This theorem is referenced by: peano5 4646 omelon 4657 frecex 6480 frecabex 6484 fict 6965 infnfi 6992 ominf 6993 inffiexmid 7003 omp1eom 7197 difinfsn 7202 0ct 7209 ctmlemr 7210 ctssdclemn0 7212 ctssdclemr 7214 ctssdc 7215 enumct 7217 omct 7219 ctfoex 7220 nninfex 7223 infnninf 7226 infnninfOLD 7227 nnnninf 7228 exmidlpo 7245 nninfdcinf 7273 nninfwlporlem 7275 nninfwlpoimlemg 7277 nninfwlpoim 7281 nninfinfwlpo 7282 cc2lem 7378 acnccim 7384 niex 7425 enq0ex 7552 nq0ex 7553 uzenom 10570 frecfzennn 10571 nnenom 10579 fxnn0nninf 10584 0tonninf 10585 1tonninf 10586 inftonninf 10587 nninfinf 10588 hashinfuni 10922 hashinfom 10923 nninfctlemfo 12361 nninfct 12362 xpct 12767 ennnfonelemj0 12772 ennnfonelemg 12774 ennnfonelemen 12792 ctiunct 12811 omctfn 12814 ssomct 12816 bj-charfunbi 15747 subctctexmid 15937 0nninf 15941 nnsf 15942 peano4nninf 15943 peano3nninf 15944 nninfself 15950 nninfsellemeq 15951 nninfsellemeqinf 15953 sbthom 15965 |
| Copyright terms: Public domain | W3C validator |