![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > omex | Unicode version |
Description: The existence of omega (the class of natural numbers). Axiom 7 of [TakeutiZaring] p. 43. (Contributed by NM, 6-Aug-1994.) |
Ref | Expression |
---|---|
omex |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfinf2 4621 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | intexabim 4181 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | dfom3 4624 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | eleq1i 2259 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | mpbir 146 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-in 3159 df-ss 3166 df-int 3871 df-iom 4623 |
This theorem is referenced by: peano5 4630 omelon 4641 frecex 6447 frecabex 6451 fict 6924 infnfi 6951 ominf 6952 inffiexmid 6962 omp1eom 7154 difinfsn 7159 0ct 7166 ctmlemr 7167 ctssdclemn0 7169 ctssdclemr 7171 ctssdc 7172 enumct 7174 omct 7176 ctfoex 7177 nninfex 7180 infnninf 7183 infnninfOLD 7184 nnnninf 7185 exmidlpo 7202 nninfdcinf 7230 nninfwlporlem 7232 nninfwlpoimlemg 7234 nninfwlpoim 7237 cc2lem 7326 niex 7372 enq0ex 7499 nq0ex 7500 uzenom 10496 frecfzennn 10497 nnenom 10505 fxnn0nninf 10510 0tonninf 10511 1tonninf 10512 inftonninf 10513 nninfinf 10514 hashinfuni 10848 hashinfom 10849 nninfctlemfo 12177 nninfct 12178 xpct 12553 ennnfonelemj0 12558 ennnfonelemg 12560 ennnfonelemen 12578 ctiunct 12597 omctfn 12600 ssomct 12602 bj-charfunbi 15303 subctctexmid 15491 0nninf 15494 nnsf 15495 peano4nninf 15496 peano3nninf 15497 nninfself 15503 nninfsellemeq 15504 nninfsellemeqinf 15506 sbthom 15516 |
Copyright terms: Public domain | W3C validator |