Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > omex | Unicode version |
Description: The existence of omega (the class of natural numbers). Axiom 7 of [TakeutiZaring] p. 43. (Contributed by NM, 6-Aug-1994.) |
Ref | Expression |
---|---|
omex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfinf2 4573 | . . 3 | |
2 | intexabim 4138 | . . 3 | |
3 | 1, 2 | ax-mp 5 | . 2 |
4 | dfom3 4576 | . . 3 | |
5 | 4 | eleq1i 2236 | . 2 |
6 | 3, 5 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wex 1485 wcel 2141 cab 2156 wral 2448 cvv 2730 c0 3414 cint 3831 csuc 4350 com 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-in 3127 df-ss 3134 df-int 3832 df-iom 4575 |
This theorem is referenced by: peano5 4582 omelon 4593 frecex 6373 frecabex 6377 fict 6846 infnfi 6873 ominf 6874 inffiexmid 6884 omp1eom 7072 difinfsn 7077 0ct 7084 ctmlemr 7085 ctssdclemn0 7087 ctssdclemr 7089 ctssdc 7090 enumct 7092 omct 7094 ctfoex 7095 nninfex 7098 infnninf 7100 infnninfOLD 7101 nnnninf 7102 exmidlpo 7119 nninfdcinf 7147 nninfwlporlem 7149 nninfwlpoimlemg 7151 nninfwlpoim 7154 cc2lem 7228 niex 7274 enq0ex 7401 nq0ex 7402 uzenom 10381 frecfzennn 10382 nnenom 10390 fxnn0nninf 10394 0tonninf 10395 1tonninf 10396 inftonninf 10397 hashinfuni 10711 hashinfom 10712 xpct 12351 ennnfonelemj0 12356 ennnfonelemg 12358 ennnfonelemen 12376 ctiunct 12395 omctfn 12398 ssomct 12400 bj-charfunbi 13846 subctctexmid 14034 0nninf 14037 nnsf 14038 peano4nninf 14039 peano3nninf 14040 nninfself 14046 nninfsellemeq 14047 nninfsellemeqinf 14049 sbthom 14058 |
Copyright terms: Public domain | W3C validator |