| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > omex | Unicode version | ||
| Description: The existence of omega (the class of natural numbers). Axiom 7 of [TakeutiZaring] p. 43. (Contributed by NM, 6-Aug-1994.) |
| Ref | Expression |
|---|---|
| omex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfinf2 4655 |
. . 3
| |
| 2 | intexabim 4212 |
. . 3
| |
| 3 | 1, 2 | ax-mp 5 |
. 2
|
| 4 | dfom3 4658 |
. . 3
| |
| 5 | 4 | eleq1i 2273 |
. 2
|
| 6 | 3, 5 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-in 3180 df-ss 3187 df-int 3900 df-iom 4657 |
| This theorem is referenced by: peano5 4664 omelon 4675 frecex 6503 frecabex 6507 fict 6991 infnfi 7018 ominf 7019 inffiexmid 7029 omp1eom 7223 difinfsn 7228 0ct 7235 ctmlemr 7236 ctssdclemn0 7238 ctssdclemr 7240 ctssdc 7241 enumct 7243 omct 7245 ctfoex 7246 nninfex 7249 infnninf 7252 infnninfOLD 7253 nnnninf 7254 exmidlpo 7271 nninfdcinf 7299 nninfwlporlem 7301 nninfwlpoimlemg 7303 nninfwlpoim 7307 nninfinfwlpo 7308 cc2lem 7413 acnccim 7419 niex 7460 enq0ex 7587 nq0ex 7588 uzenom 10607 frecfzennn 10608 nnenom 10616 fxnn0nninf 10621 0tonninf 10622 1tonninf 10623 inftonninf 10624 nninfinf 10625 hashinfuni 10959 hashinfom 10960 nninfctlemfo 12476 nninfct 12477 xpct 12882 ennnfonelemj0 12887 ennnfonelemg 12889 ennnfonelemen 12907 ctiunct 12926 omctfn 12929 ssomct 12931 bj-charfunbi 15946 subctctexmid 16139 0nninf 16143 nnsf 16144 peano4nninf 16145 peano3nninf 16146 nninfself 16152 nninfsellemeq 16153 nninfsellemeqinf 16155 sbthom 16167 |
| Copyright terms: Public domain | W3C validator |