| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > omex | Unicode version | ||
| Description: The existence of omega (the class of natural numbers). Axiom 7 of [TakeutiZaring] p. 43. (Contributed by NM, 6-Aug-1994.) |
| Ref | Expression |
|---|---|
| omex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfinf2 4681 |
. . 3
| |
| 2 | intexabim 4236 |
. . 3
| |
| 3 | 1, 2 | ax-mp 5 |
. 2
|
| 4 | dfom3 4684 |
. . 3
| |
| 5 | 4 | eleq1i 2295 |
. 2
|
| 6 | 3, 5 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-in 3203 df-ss 3210 df-int 3924 df-iom 4683 |
| This theorem is referenced by: peano5 4690 omelon 4701 frecex 6540 frecabex 6544 fict 7030 infnfi 7057 ominf 7058 inffiexmid 7068 omp1eom 7262 difinfsn 7267 0ct 7274 ctmlemr 7275 ctssdclemn0 7277 ctssdclemr 7279 ctssdc 7280 enumct 7282 omct 7284 ctfoex 7285 nninfex 7288 infnninf 7291 infnninfOLD 7292 nnnninf 7293 exmidlpo 7310 nninfdcinf 7338 nninfwlporlem 7340 nninfwlpoimlemg 7342 nninfwlpoim 7346 nninfinfwlpo 7347 cc2lem 7452 acnccim 7458 niex 7499 enq0ex 7626 nq0ex 7627 uzenom 10647 frecfzennn 10648 nnenom 10656 fxnn0nninf 10661 0tonninf 10662 1tonninf 10663 inftonninf 10664 nninfinf 10665 hashinfuni 10999 hashinfom 11000 nninfctlemfo 12561 nninfct 12562 xpct 12967 ennnfonelemj0 12972 ennnfonelemg 12974 ennnfonelemen 12992 ctiunct 13011 omctfn 13014 ssomct 13016 bj-charfunbi 16174 subctctexmid 16366 0nninf 16370 nnsf 16371 peano4nninf 16372 peano3nninf 16373 nninfself 16379 nninfsellemeq 16380 nninfsellemeqinf 16382 sbthom 16394 |
| Copyright terms: Public domain | W3C validator |