| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > omex | Unicode version | ||
| Description: The existence of omega (the class of natural numbers). Axiom 7 of [TakeutiZaring] p. 43. (Contributed by NM, 6-Aug-1994.) |
| Ref | Expression |
|---|---|
| omex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfinf2 4638 |
. . 3
| |
| 2 | intexabim 4197 |
. . 3
| |
| 3 | 1, 2 | ax-mp 5 |
. 2
|
| 4 | dfom3 4641 |
. . 3
| |
| 5 | 4 | eleq1i 2271 |
. 2
|
| 6 | 3, 5 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-in 3172 df-ss 3179 df-int 3886 df-iom 4640 |
| This theorem is referenced by: peano5 4647 omelon 4658 frecex 6482 frecabex 6486 fict 6967 infnfi 6994 ominf 6995 inffiexmid 7005 omp1eom 7199 difinfsn 7204 0ct 7211 ctmlemr 7212 ctssdclemn0 7214 ctssdclemr 7216 ctssdc 7217 enumct 7219 omct 7221 ctfoex 7222 nninfex 7225 infnninf 7228 infnninfOLD 7229 nnnninf 7230 exmidlpo 7247 nninfdcinf 7275 nninfwlporlem 7277 nninfwlpoimlemg 7279 nninfwlpoim 7283 nninfinfwlpo 7284 cc2lem 7380 acnccim 7386 niex 7427 enq0ex 7554 nq0ex 7555 uzenom 10572 frecfzennn 10573 nnenom 10581 fxnn0nninf 10586 0tonninf 10587 1tonninf 10588 inftonninf 10589 nninfinf 10590 hashinfuni 10924 hashinfom 10925 nninfctlemfo 12394 nninfct 12395 xpct 12800 ennnfonelemj0 12805 ennnfonelemg 12807 ennnfonelemen 12825 ctiunct 12844 omctfn 12847 ssomct 12849 bj-charfunbi 15784 subctctexmid 15974 0nninf 15978 nnsf 15979 peano4nninf 15980 peano3nninf 15981 nninfself 15987 nninfsellemeq 15988 nninfsellemeqinf 15990 sbthom 16002 |
| Copyright terms: Public domain | W3C validator |