Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exim | GIF version |
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
Ref | Expression |
---|---|
exim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hba1 1520 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → ∀𝑥∀𝑥(𝜑 → 𝜓)) | |
2 | hbe1 1475 | . 2 ⊢ (∃𝑥𝜓 → ∀𝑥∃𝑥𝜓) | |
3 | 19.8a 1570 | . . . 4 ⊢ (𝜓 → ∃𝑥𝜓) | |
4 | 3 | imim2i 12 | . . 3 ⊢ ((𝜑 → 𝜓) → (𝜑 → ∃𝑥𝜓)) |
5 | 4 | sps 1517 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∃𝑥𝜓)) |
6 | 1, 2, 5 | exlimdh 1576 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1333 ∃wex 1472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: eximi 1580 exbi 1584 eximdh 1591 19.29 1600 19.25 1606 alexim 1625 19.23t 1657 spimt 1716 equvini 1738 nfexd 1741 ax10oe 1777 sbcof2 1790 spsbim 1823 nf5-1 2004 mor 2048 rexim 2551 elex22 2727 elex2 2728 vtoclegft 2784 spcimgft 2788 spcimegft 2790 spc2gv 2803 spc3gv 2805 ssoprab2 5874 bj-inf2vnlem1 13516 |
Copyright terms: Public domain | W3C validator |