| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exim | GIF version | ||
| Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| exim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hba1 1564 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → ∀𝑥∀𝑥(𝜑 → 𝜓)) | |
| 2 | hbe1 1519 | . 2 ⊢ (∃𝑥𝜓 → ∀𝑥∃𝑥𝜓) | |
| 3 | 19.8a 1614 | . . . 4 ⊢ (𝜓 → ∃𝑥𝜓) | |
| 4 | 3 | imim2i 12 | . . 3 ⊢ ((𝜑 → 𝜓) → (𝜑 → ∃𝑥𝜓)) |
| 5 | 4 | sps 1561 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∃𝑥𝜓)) |
| 6 | 1, 2, 5 | exlimdh 1620 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: eximi 1624 exbi 1628 eximdh 1635 19.29 1644 19.25 1650 alexim 1669 19.23t 1701 spimt 1760 equvini 1782 nfexd 1785 ax10oe 1821 sbcof2 1834 spsbim 1867 nf5-1 2053 mor 2097 rexim 2601 elex22 2789 elex2 2790 vtoclegft 2849 spcimgft 2853 spcimegft 2855 spc2gv 2868 spc3gv 2870 ssoprab2 6013 bj-inf2vnlem1 16040 |
| Copyright terms: Public domain | W3C validator |