ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exim GIF version

Theorem exim 1623
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
exim (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem exim
StepHypRef Expression
1 hba1 1564 . 2 (∀𝑥(𝜑𝜓) → ∀𝑥𝑥(𝜑𝜓))
2 hbe1 1519 . 2 (∃𝑥𝜓 → ∀𝑥𝑥𝜓)
3 19.8a 1614 . . . 4 (𝜓 → ∃𝑥𝜓)
43imim2i 12 . . 3 ((𝜑𝜓) → (𝜑 → ∃𝑥𝜓))
54sps 1561 . 2 (∀𝑥(𝜑𝜓) → (𝜑 → ∃𝑥𝜓))
61, 2, 5exlimdh 1620 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-ial 1558
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  eximi  1624  exbi  1628  eximdh  1635  19.29  1644  19.25  1650  alexim  1669  19.23t  1701  spimt  1760  equvini  1782  nfexd  1785  ax10oe  1821  sbcof2  1834  spsbim  1867  nf5-1  2053  mor  2097  rexim  2601  elex22  2789  elex2  2790  vtoclegft  2849  spcimgft  2853  spcimegft  2855  spc2gv  2868  spc3gv  2870  ssoprab2  6013  bj-inf2vnlem1  16040
  Copyright terms: Public domain W3C validator