ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exim GIF version

Theorem exim 1579
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
exim (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem exim
StepHypRef Expression
1 hba1 1520 . 2 (∀𝑥(𝜑𝜓) → ∀𝑥𝑥(𝜑𝜓))
2 hbe1 1475 . 2 (∃𝑥𝜓 → ∀𝑥𝑥𝜓)
3 19.8a 1570 . . . 4 (𝜓 → ∃𝑥𝜓)
43imim2i 12 . . 3 ((𝜑𝜓) → (𝜑 → ∃𝑥𝜓))
54sps 1517 . 2 (∀𝑥(𝜑𝜓) → (𝜑 → ∃𝑥𝜓))
61, 2, 5exlimdh 1576 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1333  wex 1472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-ial 1514
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  eximi  1580  exbi  1584  eximdh  1591  19.29  1600  19.25  1606  alexim  1625  19.23t  1657  spimt  1716  equvini  1738  nfexd  1741  ax10oe  1777  sbcof2  1790  spsbim  1823  nf5-1  2004  mor  2048  rexim  2551  elex22  2727  elex2  2728  vtoclegft  2784  spcimgft  2788  spcimegft  2790  spc2gv  2803  spc3gv  2805  ssoprab2  5874  bj-inf2vnlem1  13516
  Copyright terms: Public domain W3C validator