ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exim GIF version

Theorem exim 1613
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
exim (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem exim
StepHypRef Expression
1 hba1 1554 . 2 (∀𝑥(𝜑𝜓) → ∀𝑥𝑥(𝜑𝜓))
2 hbe1 1509 . 2 (∃𝑥𝜓 → ∀𝑥𝑥𝜓)
3 19.8a 1604 . . . 4 (𝜓 → ∃𝑥𝜓)
43imim2i 12 . . 3 ((𝜑𝜓) → (𝜑 → ∃𝑥𝜓))
54sps 1551 . 2 (∀𝑥(𝜑𝜓) → (𝜑 → ∃𝑥𝜓))
61, 2, 5exlimdh 1610 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362  wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  eximi  1614  exbi  1618  eximdh  1625  19.29  1634  19.25  1640  alexim  1659  19.23t  1691  spimt  1750  equvini  1772  nfexd  1775  ax10oe  1811  sbcof2  1824  spsbim  1857  nf5-1  2043  mor  2087  rexim  2591  elex22  2778  elex2  2779  vtoclegft  2836  spcimgft  2840  spcimegft  2842  spc2gv  2855  spc3gv  2857  ssoprab2  5978  bj-inf2vnlem1  15616
  Copyright terms: Public domain W3C validator