| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exim | GIF version | ||
| Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| exim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hba1 1554 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → ∀𝑥∀𝑥(𝜑 → 𝜓)) | |
| 2 | hbe1 1509 | . 2 ⊢ (∃𝑥𝜓 → ∀𝑥∃𝑥𝜓) | |
| 3 | 19.8a 1604 | . . . 4 ⊢ (𝜓 → ∃𝑥𝜓) | |
| 4 | 3 | imim2i 12 | . . 3 ⊢ ((𝜑 → 𝜓) → (𝜑 → ∃𝑥𝜓)) |
| 5 | 4 | sps 1551 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∃𝑥𝜓)) |
| 6 | 1, 2, 5 | exlimdh 1610 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: eximi 1614 exbi 1618 eximdh 1625 19.29 1634 19.25 1640 alexim 1659 19.23t 1691 spimt 1750 equvini 1772 nfexd 1775 ax10oe 1811 sbcof2 1824 spsbim 1857 nf5-1 2043 mor 2087 rexim 2591 elex22 2778 elex2 2779 vtoclegft 2836 spcimgft 2840 spcimegft 2842 spc2gv 2855 spc3gv 2857 ssoprab2 5978 bj-inf2vnlem1 15616 |
| Copyright terms: Public domain | W3C validator |