![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimddv | GIF version |
Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.) |
Ref | Expression |
---|---|
exlimddv.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
exlimddv.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
exlimddv | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimddv.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | exlimddv.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
3 | 2 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | 3 | exlimdv 1830 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie2 1505 ax-17 1537 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: fvmptdv2 5648 tfrlemi14d 6388 tfrexlem 6389 tfr1onlemres 6404 tfrcllemres 6417 tfrcldm 6418 erref 6609 xpdom2 6887 dom0 6896 xpen 6903 mapdom1g 6905 phplem4dom 6920 phplem4on 6925 fidceq 6927 dif1en 6937 fin0 6943 fin0or 6944 isinfinf 6955 infm 6962 en2eqpr 6965 fiuni 7039 supelti 7063 djudom 7154 difinfsn 7161 enomnilem 7199 enmkvlem 7222 enwomnilem 7230 exmidfodomrlemim 7263 exmidaclem 7270 cc2lem 7328 cc3 7330 genpml 7579 genpmu 7580 ltexprlemm 7662 ltexprlemfl 7671 ltexprlemfu 7673 suplocsr 7871 axpre-suploc 7964 eqord1 8504 nn1suc 9003 seq3f1oleml 10590 zfz1isolem1 10914 nninfdcex 12093 zsupssdc 12094 eulerth 12374 4sqlem14 12545 4sqlem17 12548 4sqlem18 12549 ennnfonelemim 12584 exmidunben 12586 enctlem 12592 ctiunct 12600 unct 12602 omctfn 12603 omiunct 12604 relelbasov 12683 issubg2m 13262 lmff 14428 txcn 14454 suplociccreex 14803 suplociccex 14804 1dom1el 15553 subctctexmid 15561 exmidsbthrlem 15582 sbthom 15586 |
Copyright terms: Public domain | W3C validator |