| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimddv | GIF version | ||
| Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.) |
| Ref | Expression |
|---|---|
| exlimddv.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
| exlimddv.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| exlimddv | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimddv.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
| 2 | exlimddv.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 3 | 2 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 3 | exlimdv 1865 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| 5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie2 1540 ax-17 1572 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: fvmptdv2 5717 tfrlemi14d 6469 tfrexlem 6470 tfr1onlemres 6485 tfrcllemres 6498 tfrcldm 6499 erref 6690 en2 6963 en2m 6964 xpdom2 6978 dom0 6987 xpen 6994 mapdom1g 6996 phplem4dom 7011 phplem4on 7017 fidceq 7019 dif1en 7029 fin0 7035 fin0or 7036 isinfinf 7047 infm 7054 en2eqpr 7057 fiuni 7133 supelti 7157 djudom 7248 difinfsn 7255 enomnilem 7293 enmkvlem 7316 enwomnilem 7324 exmidfodomrlemim 7367 exmidaclem 7378 cc2lem 7440 cc3 7442 genpml 7692 genpmu 7693 ltexprlemm 7775 ltexprlemfl 7784 ltexprlemfu 7786 suplocsr 7984 axpre-suploc 8077 eqord1 8618 nn1suc 9117 nninfdcex 10444 zsupssdc 10445 seq3f1oleml 10725 zfz1isolem1 11049 eulerth 12741 4sqlem14 12913 4sqlem17 12916 4sqlem18 12917 ennnfonelemim 12981 exmidunben 12983 enctlem 12989 ctiunct 12997 unct 12999 omctfn 13000 omiunct 13001 relelbasov 13081 issubg2m 13712 lmff 14908 txcn 14934 suplociccreex 15283 suplociccex 15284 1dom1el 16284 subctctexmid 16297 exmidsbthrlem 16321 sbthom 16325 |
| Copyright terms: Public domain | W3C validator |