| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimddv | GIF version | ||
| Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.) |
| Ref | Expression |
|---|---|
| exlimddv.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
| exlimddv.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| exlimddv | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimddv.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
| 2 | exlimddv.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 3 | 2 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 3 | exlimdv 1843 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| 5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie2 1518 ax-17 1550 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: fvmptdv2 5681 tfrlemi14d 6431 tfrexlem 6432 tfr1onlemres 6447 tfrcllemres 6460 tfrcldm 6461 erref 6652 en2 6925 en2m 6926 xpdom2 6940 dom0 6949 xpen 6956 mapdom1g 6958 phplem4dom 6973 phplem4on 6978 fidceq 6980 dif1en 6990 fin0 6996 fin0or 6997 isinfinf 7008 infm 7015 en2eqpr 7018 fiuni 7094 supelti 7118 djudom 7209 difinfsn 7216 enomnilem 7254 enmkvlem 7277 enwomnilem 7285 exmidfodomrlemim 7324 exmidaclem 7335 cc2lem 7393 cc3 7395 genpml 7645 genpmu 7646 ltexprlemm 7728 ltexprlemfl 7737 ltexprlemfu 7739 suplocsr 7937 axpre-suploc 8030 eqord1 8571 nn1suc 9070 nninfdcex 10397 zsupssdc 10398 seq3f1oleml 10678 zfz1isolem1 11002 eulerth 12625 4sqlem14 12797 4sqlem17 12800 4sqlem18 12801 ennnfonelemim 12865 exmidunben 12867 enctlem 12873 ctiunct 12881 unct 12883 omctfn 12884 omiunct 12885 relelbasov 12964 issubg2m 13595 lmff 14791 txcn 14817 suplociccreex 15166 suplociccex 15167 1dom1el 16061 subctctexmid 16072 exmidsbthrlem 16096 sbthom 16100 |
| Copyright terms: Public domain | W3C validator |