| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimddv | GIF version | ||
| Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.) |
| Ref | Expression |
|---|---|
| exlimddv.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
| exlimddv.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| exlimddv | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimddv.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
| 2 | exlimddv.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 3 | 2 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 3 | exlimdv 1833 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| 5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: fvmptdv2 5654 tfrlemi14d 6400 tfrexlem 6401 tfr1onlemres 6416 tfrcllemres 6429 tfrcldm 6430 erref 6621 xpdom2 6899 dom0 6908 xpen 6915 mapdom1g 6917 phplem4dom 6932 phplem4on 6937 fidceq 6939 dif1en 6949 fin0 6955 fin0or 6956 isinfinf 6967 infm 6974 en2eqpr 6977 fiuni 7053 supelti 7077 djudom 7168 difinfsn 7175 enomnilem 7213 enmkvlem 7236 enwomnilem 7244 exmidfodomrlemim 7282 exmidaclem 7293 cc2lem 7351 cc3 7353 genpml 7603 genpmu 7604 ltexprlemm 7686 ltexprlemfl 7695 ltexprlemfu 7697 suplocsr 7895 axpre-suploc 7988 eqord1 8529 nn1suc 9028 nninfdcex 10346 zsupssdc 10347 seq3f1oleml 10627 zfz1isolem1 10951 eulerth 12428 4sqlem14 12600 4sqlem17 12603 4sqlem18 12604 ennnfonelemim 12668 exmidunben 12670 enctlem 12676 ctiunct 12684 unct 12686 omctfn 12687 omiunct 12688 relelbasov 12767 issubg2m 13397 lmff 14593 txcn 14619 suplociccreex 14968 suplociccex 14969 1dom1el 15745 subctctexmid 15755 exmidsbthrlem 15779 sbthom 15783 |
| Copyright terms: Public domain | W3C validator |