Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exlimddv | GIF version |
Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.) |
Ref | Expression |
---|---|
exlimddv.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
exlimddv.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
exlimddv | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimddv.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | exlimddv.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
3 | 2 | ex 114 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | 3 | exlimdv 1807 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie2 1482 ax-17 1514 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: fvmptdv2 5574 tfrlemi14d 6297 tfrexlem 6298 tfr1onlemres 6313 tfrcllemres 6326 tfrcldm 6327 erref 6517 xpdom2 6793 dom0 6800 xpen 6807 mapdom1g 6809 phplem4dom 6824 phplem4on 6829 fidceq 6831 dif1en 6841 fin0 6847 fin0or 6848 isinfinf 6859 infm 6866 en2eqpr 6869 fiuni 6939 supelti 6963 djudom 7054 difinfsn 7061 enomnilem 7098 enmkvlem 7121 enwomnilem 7129 exmidfodomrlemim 7153 exmidaclem 7160 cc2lem 7203 cc3 7205 genpml 7454 genpmu 7455 ltexprlemm 7537 ltexprlemfl 7546 ltexprlemfu 7548 suplocsr 7746 axpre-suploc 7839 eqord1 8377 nn1suc 8872 seq3f1oleml 10434 zfz1isolem1 10749 nninfdcex 11882 zsupssdc 11883 eulerth 12161 ennnfonelemim 12353 exmidunben 12355 enctlem 12361 ctiunct 12369 unct 12371 omctfn 12372 omiunct 12373 lmff 12849 txcn 12875 suplociccreex 13202 suplociccex 13203 subctctexmid 13841 exmidsbthrlem 13861 sbthom 13865 |
Copyright terms: Public domain | W3C validator |