![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimddv | GIF version |
Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.) |
Ref | Expression |
---|---|
exlimddv.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
exlimddv.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
exlimddv | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimddv.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | exlimddv.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
3 | 2 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | 3 | exlimdv 1830 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie2 1505 ax-17 1537 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: fvmptdv2 5647 tfrlemi14d 6386 tfrexlem 6387 tfr1onlemres 6402 tfrcllemres 6415 tfrcldm 6416 erref 6607 xpdom2 6885 dom0 6894 xpen 6901 mapdom1g 6903 phplem4dom 6918 phplem4on 6923 fidceq 6925 dif1en 6935 fin0 6941 fin0or 6942 isinfinf 6953 infm 6960 en2eqpr 6963 fiuni 7037 supelti 7061 djudom 7152 difinfsn 7159 enomnilem 7197 enmkvlem 7220 enwomnilem 7228 exmidfodomrlemim 7261 exmidaclem 7268 cc2lem 7326 cc3 7328 genpml 7577 genpmu 7578 ltexprlemm 7660 ltexprlemfl 7669 ltexprlemfu 7671 suplocsr 7869 axpre-suploc 7962 eqord1 8502 nn1suc 9001 seq3f1oleml 10587 zfz1isolem1 10911 nninfdcex 12090 zsupssdc 12091 eulerth 12371 4sqlem14 12542 4sqlem17 12545 4sqlem18 12546 ennnfonelemim 12581 exmidunben 12583 enctlem 12589 ctiunct 12597 unct 12599 omctfn 12600 omiunct 12601 relelbasov 12680 issubg2m 13259 lmff 14417 txcn 14443 suplociccreex 14778 suplociccex 14779 1dom1el 15483 subctctexmid 15491 exmidsbthrlem 15512 sbthom 15516 |
Copyright terms: Public domain | W3C validator |