| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimddv | GIF version | ||
| Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.) |
| Ref | Expression |
|---|---|
| exlimddv.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
| exlimddv.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| exlimddv | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimddv.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
| 2 | exlimddv.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 3 | 2 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 3 | exlimdv 1865 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| 5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie2 1540 ax-17 1572 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: fvmptdv2 5726 tfrlemi14d 6485 tfrexlem 6486 tfr1onlemres 6501 tfrcllemres 6514 tfrcldm 6515 erref 6708 en2 6981 en2m 6982 xpdom2 6998 dom0 7007 xpen 7014 mapdom1g 7016 phplem4dom 7031 phplem4on 7037 fidceq 7039 dif1en 7049 fin0 7055 fin0or 7056 isinfinf 7067 infm 7074 en2eqpr 7077 fiuni 7153 supelti 7177 djudom 7268 difinfsn 7275 enomnilem 7313 enmkvlem 7336 enwomnilem 7344 exmidfodomrlemim 7387 exmidaclem 7398 cc2lem 7460 cc3 7462 genpml 7712 genpmu 7713 ltexprlemm 7795 ltexprlemfl 7804 ltexprlemfu 7806 suplocsr 8004 axpre-suploc 8097 eqord1 8638 nn1suc 9137 nninfdcex 10465 zsupssdc 10466 seq3f1oleml 10746 zfz1isolem1 11070 eulerth 12763 4sqlem14 12935 4sqlem17 12938 4sqlem18 12939 ennnfonelemim 13003 exmidunben 13005 enctlem 13011 ctiunct 13019 unct 13021 omctfn 13022 omiunct 13023 relelbasov 13103 issubg2m 13734 lmff 14931 txcn 14957 suplociccreex 15306 suplociccex 15307 wlkvtxiedg 16066 wlkvtxiedgg 16067 wlkreslem 16097 1dom1el 16378 3dom 16381 subctctexmid 16395 exmidsbthrlem 16420 sbthom 16424 |
| Copyright terms: Public domain | W3C validator |