Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exlimddv | GIF version |
Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.) |
Ref | Expression |
---|---|
exlimddv.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
exlimddv.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
exlimddv | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimddv.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | exlimddv.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
3 | 2 | ex 114 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | 3 | exlimdv 1812 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie2 1487 ax-17 1519 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: fvmptdv2 5585 tfrlemi14d 6312 tfrexlem 6313 tfr1onlemres 6328 tfrcllemres 6341 tfrcldm 6342 erref 6533 xpdom2 6809 dom0 6816 xpen 6823 mapdom1g 6825 phplem4dom 6840 phplem4on 6845 fidceq 6847 dif1en 6857 fin0 6863 fin0or 6864 isinfinf 6875 infm 6882 en2eqpr 6885 fiuni 6955 supelti 6979 djudom 7070 difinfsn 7077 enomnilem 7114 enmkvlem 7137 enwomnilem 7145 exmidfodomrlemim 7178 exmidaclem 7185 cc2lem 7228 cc3 7230 genpml 7479 genpmu 7480 ltexprlemm 7562 ltexprlemfl 7571 ltexprlemfu 7573 suplocsr 7771 axpre-suploc 7864 eqord1 8402 nn1suc 8897 seq3f1oleml 10459 zfz1isolem1 10775 nninfdcex 11908 zsupssdc 11909 eulerth 12187 ennnfonelemim 12379 exmidunben 12381 enctlem 12387 ctiunct 12395 unct 12397 omctfn 12398 omiunct 12399 lmff 13043 txcn 13069 suplociccreex 13396 suplociccex 13397 subctctexmid 14034 exmidsbthrlem 14054 sbthom 14058 |
Copyright terms: Public domain | W3C validator |