![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimddv | GIF version |
Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.) |
Ref | Expression |
---|---|
exlimddv.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
exlimddv.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
exlimddv | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimddv.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | exlimddv.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
3 | 2 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | 3 | exlimdv 1819 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie2 1494 ax-17 1526 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: fvmptdv2 5607 tfrlemi14d 6336 tfrexlem 6337 tfr1onlemres 6352 tfrcllemres 6365 tfrcldm 6366 erref 6557 xpdom2 6833 dom0 6840 xpen 6847 mapdom1g 6849 phplem4dom 6864 phplem4on 6869 fidceq 6871 dif1en 6881 fin0 6887 fin0or 6888 isinfinf 6899 infm 6906 en2eqpr 6909 fiuni 6979 supelti 7003 djudom 7094 difinfsn 7101 enomnilem 7138 enmkvlem 7161 enwomnilem 7169 exmidfodomrlemim 7202 exmidaclem 7209 cc2lem 7267 cc3 7269 genpml 7518 genpmu 7519 ltexprlemm 7601 ltexprlemfl 7610 ltexprlemfu 7612 suplocsr 7810 axpre-suploc 7903 eqord1 8442 nn1suc 8940 seq3f1oleml 10505 zfz1isolem1 10822 nninfdcex 11956 zsupssdc 11957 eulerth 12235 ennnfonelemim 12427 exmidunben 12429 enctlem 12435 ctiunct 12443 unct 12445 omctfn 12446 omiunct 12447 issubg2m 13054 lmff 13834 txcn 13860 suplociccreex 14187 suplociccex 14188 subctctexmid 14835 exmidsbthrlem 14855 sbthom 14859 |
Copyright terms: Public domain | W3C validator |