ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.28v GIF version

Theorem 19.28v 1888
Description: Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
19.28v (∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem 19.28v
StepHypRef Expression
1 ax-17 1514 . 2 (𝜑 → ∀𝑥𝜑)
2119.28h 1550 1 (∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  reu6  2915  dfer2  6502
  Copyright terms: Public domain W3C validator