ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.36aiv GIF version

Theorem 19.36aiv 1889
Description: Inference from Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.36aiv.1 𝑥(𝜑𝜓)
Assertion
Ref Expression
19.36aiv (∀𝑥𝜑𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 19.36aiv
StepHypRef Expression
1 nfv 1516 . 2 𝑥𝜓
2 19.36aiv.1 . 2 𝑥(𝜑𝜓)
31, 219.36i 1660 1 (∀𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  vtocl2  2781  vtocl3  2782
  Copyright terms: Public domain W3C validator