Proof of Theorem reu6
Step | Hyp | Ref
| Expression |
1 | | df-reu 2462 |
. 2
⊢
(∃!𝑥 ∈
𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
2 | | 19.28v 1900 |
. . . . 5
⊢
(∀𝑥(𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ↔ (𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) |
3 | | eleq1 2240 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
4 | | sbequ12 1771 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
5 | 3, 4 | anbi12d 473 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑))) |
6 | | equequ1 1712 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑦 ↔ 𝑦 = 𝑦)) |
7 | 5, 6 | bibi12d 235 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ↔ ((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ 𝑦 = 𝑦))) |
8 | | equid 1701 |
. . . . . . . . . . . 12
⊢ 𝑦 = 𝑦 |
9 | 8 | tbt 247 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ ((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ 𝑦 = 𝑦)) |
10 | | simpl 109 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) → 𝑦 ∈ 𝐴) |
11 | 9, 10 | sylbir 135 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ 𝑦 = 𝑦) → 𝑦 ∈ 𝐴) |
12 | 7, 11 | syl6bi 163 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → 𝑦 ∈ 𝐴)) |
13 | 12 | spimv 1811 |
. . . . . . . 8
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → 𝑦 ∈ 𝐴) |
14 | | biimp 118 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦)) |
15 | 14 | expdimp 259 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ∧ 𝑥 ∈ 𝐴) → (𝜑 → 𝑥 = 𝑦)) |
16 | | biimpr 130 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ∧ 𝜑))) |
17 | | simpr 110 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜑) |
18 | 16, 17 | syl6 33 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → (𝑥 = 𝑦 → 𝜑)) |
19 | 18 | adantr 276 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ∧ 𝑥 ∈ 𝐴) → (𝑥 = 𝑦 → 𝜑)) |
20 | 15, 19 | impbid 129 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ∧ 𝑥 ∈ 𝐴) → (𝜑 ↔ 𝑥 = 𝑦)) |
21 | 20 | ex 115 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) |
22 | 21 | sps 1537 |
. . . . . . . 8
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) |
23 | 13, 22 | jca 306 |
. . . . . . 7
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → (𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) |
24 | 23 | a5i 1543 |
. . . . . 6
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → ∀𝑥(𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) |
25 | | biimp 118 |
. . . . . . . . . . 11
⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) |
26 | 25 | imim2i 12 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)) → (𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝑦))) |
27 | 26 | impd 254 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦)) |
28 | 27 | adantl 277 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦)) |
29 | | eleq1a 2249 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐴 → (𝑥 = 𝑦 → 𝑥 ∈ 𝐴)) |
30 | 29 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → (𝑥 = 𝑦 → 𝑥 ∈ 𝐴)) |
31 | 30 | imp 124 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝑥 ∈ 𝐴) |
32 | | biimpr 130 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝑥 = 𝑦 → 𝜑)) |
33 | 32 | imim2i 12 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)) → (𝑥 ∈ 𝐴 → (𝑥 = 𝑦 → 𝜑))) |
34 | 33 | com23 78 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)) → (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 → 𝜑))) |
35 | 34 | imp 124 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)) ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 → 𝜑)) |
36 | 35 | adantll 476 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 → 𝜑)) |
37 | 31, 36 | jcai 311 |
. . . . . . . . 9
⊢ (((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 ∧ 𝜑)) |
38 | 37 | ex 115 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ∧ 𝜑))) |
39 | 28, 38 | impbid 129 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦)) |
40 | 39 | alimi 1455 |
. . . . . 6
⊢
(∀𝑥(𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦)) |
41 | 24, 40 | impbii 126 |
. . . . 5
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) |
42 | | df-ral 2460 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝜑 ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) |
43 | 42 | anbi2i 457 |
. . . . 5
⊢ ((𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦)) ↔ (𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) |
44 | 2, 41, 43 | 3bitr4i 212 |
. . . 4
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ↔ (𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦))) |
45 | 44 | exbii 1605 |
. . 3
⊢
(∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦))) |
46 | | df-eu 2029 |
. . 3
⊢
(∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦)) |
47 | | df-rex 2461 |
. . 3
⊢
(∃𝑦 ∈
𝐴 ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦))) |
48 | 45, 46, 47 | 3bitr4i 212 |
. 2
⊢
(∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦)) |
49 | 1, 48 | bitri 184 |
1
⊢
(∃!𝑥 ∈
𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦)) |