ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.37aiv GIF version

Theorem 19.37aiv 1668
Description: Inference from Theorem 19.37 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.37aiv.1 𝑥(𝜑𝜓)
Assertion
Ref Expression
19.37aiv (𝜑 → ∃𝑥𝜓)
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem 19.37aiv
StepHypRef Expression
1 19.37aiv.1 . 2 𝑥(𝜑𝜓)
2 nfv 1521 . . 3 𝑥𝜑
3219.37-1 1667 . 2 (∃𝑥(𝜑𝜓) → (𝜑 → ∃𝑥𝜓))
41, 3ax-mp 5 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by:  eqvinc  2853  limom  4598
  Copyright terms: Public domain W3C validator