Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.37aiv | GIF version |
Description: Inference from Theorem 19.37 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.37aiv.1 | ⊢ ∃𝑥(𝜑 → 𝜓) |
Ref | Expression |
---|---|
19.37aiv | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.37aiv.1 | . 2 ⊢ ∃𝑥(𝜑 → 𝜓) | |
2 | nfv 1516 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | 19.37-1 1662 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) → (𝜑 → ∃𝑥𝜓)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: eqvinc 2849 limom 4591 |
Copyright terms: Public domain | W3C validator |