ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.37-1 GIF version

Theorem 19.37-1 1667
Description: One direction of Theorem 19.37 of [Margaris] p. 90. The converse holds in classical logic but not, in general, here. (Contributed by Jim Kingdon, 21-Jun-2018.)
Hypothesis
Ref Expression
19.37-1.1 𝑥𝜑
Assertion
Ref Expression
19.37-1 (∃𝑥(𝜑𝜓) → (𝜑 → ∃𝑥𝜓))

Proof of Theorem 19.37-1
StepHypRef Expression
1 19.37-1.1 . . 3 𝑥𝜑
2119.3 1547 . 2 (∀𝑥𝜑𝜑)
3 19.35-1 1617 . 2 (∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
42, 3syl5bir 152 1 (∃𝑥(𝜑𝜓) → (𝜑 → ∃𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346  wnf 1453  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by:  19.37aiv  1668  spcimegft  2808  eqvincg  2854
  Copyright terms: Public domain W3C validator