| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqvinc | GIF version | ||
| Description: A variable introduction law for class equality. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| eqvinc.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eqvinc | ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvinc.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 2 | 1 | isseti 2808 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝐴 |
| 3 | ax-1 6 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐴 = 𝐵 → 𝑥 = 𝐴)) | |
| 4 | eqtr 2247 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝐴 = 𝐵) → 𝑥 = 𝐵) | |
| 5 | 4 | ex 115 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐴 = 𝐵 → 𝑥 = 𝐵)) |
| 6 | 3, 5 | jca 306 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝐴 = 𝐵 → 𝑥 = 𝐴) ∧ (𝐴 = 𝐵 → 𝑥 = 𝐵))) |
| 7 | 6 | eximi 1646 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → ∃𝑥((𝐴 = 𝐵 → 𝑥 = 𝐴) ∧ (𝐴 = 𝐵 → 𝑥 = 𝐵))) |
| 8 | pm3.43 604 | . . . . 5 ⊢ (((𝐴 = 𝐵 → 𝑥 = 𝐴) ∧ (𝐴 = 𝐵 → 𝑥 = 𝐵)) → (𝐴 = 𝐵 → (𝑥 = 𝐴 ∧ 𝑥 = 𝐵))) | |
| 9 | 8 | eximi 1646 | . . . 4 ⊢ (∃𝑥((𝐴 = 𝐵 → 𝑥 = 𝐴) ∧ (𝐴 = 𝐵 → 𝑥 = 𝐵)) → ∃𝑥(𝐴 = 𝐵 → (𝑥 = 𝐴 ∧ 𝑥 = 𝐵))) |
| 10 | 2, 7, 9 | mp2b 8 | . . 3 ⊢ ∃𝑥(𝐴 = 𝐵 → (𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
| 11 | 10 | 19.37aiv 1721 | . 2 ⊢ (𝐴 = 𝐵 → ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
| 12 | eqtr2 2248 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐵) → 𝐴 = 𝐵) | |
| 13 | 12 | exlimiv 1644 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵) → 𝐴 = 𝐵) |
| 14 | 11, 13 | impbii 126 | 1 ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: eqvincf 2928 |
| Copyright terms: Public domain | W3C validator |