| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqvinc | GIF version | ||
| Description: A variable introduction law for class equality. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| eqvinc.1 | ⊢ 𝐴 ∈ V | 
| Ref | Expression | 
|---|---|
| eqvinc | ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqvinc.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 2 | 1 | isseti 2771 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝐴 | 
| 3 | ax-1 6 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐴 = 𝐵 → 𝑥 = 𝐴)) | |
| 4 | eqtr 2214 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝐴 = 𝐵) → 𝑥 = 𝐵) | |
| 5 | 4 | ex 115 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐴 = 𝐵 → 𝑥 = 𝐵)) | 
| 6 | 3, 5 | jca 306 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝐴 = 𝐵 → 𝑥 = 𝐴) ∧ (𝐴 = 𝐵 → 𝑥 = 𝐵))) | 
| 7 | 6 | eximi 1614 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → ∃𝑥((𝐴 = 𝐵 → 𝑥 = 𝐴) ∧ (𝐴 = 𝐵 → 𝑥 = 𝐵))) | 
| 8 | pm3.43 602 | . . . . 5 ⊢ (((𝐴 = 𝐵 → 𝑥 = 𝐴) ∧ (𝐴 = 𝐵 → 𝑥 = 𝐵)) → (𝐴 = 𝐵 → (𝑥 = 𝐴 ∧ 𝑥 = 𝐵))) | |
| 9 | 8 | eximi 1614 | . . . 4 ⊢ (∃𝑥((𝐴 = 𝐵 → 𝑥 = 𝐴) ∧ (𝐴 = 𝐵 → 𝑥 = 𝐵)) → ∃𝑥(𝐴 = 𝐵 → (𝑥 = 𝐴 ∧ 𝑥 = 𝐵))) | 
| 10 | 2, 7, 9 | mp2b 8 | . . 3 ⊢ ∃𝑥(𝐴 = 𝐵 → (𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) | 
| 11 | 10 | 19.37aiv 1689 | . 2 ⊢ (𝐴 = 𝐵 → ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) | 
| 12 | eqtr2 2215 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐵) → 𝐴 = 𝐵) | |
| 13 | 12 | exlimiv 1612 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵) → 𝐴 = 𝐵) | 
| 14 | 11, 13 | impbii 126 | 1 ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 | 
| This theorem is referenced by: eqvincf 2889 | 
| Copyright terms: Public domain | W3C validator |