![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqvinc | GIF version |
Description: A variable introduction law for class equality. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
eqvinc.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eqvinc | ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvinc.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | 1 | isseti 2747 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝐴 |
3 | ax-1 6 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐴 = 𝐵 → 𝑥 = 𝐴)) | |
4 | eqtr 2195 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝐴 = 𝐵) → 𝑥 = 𝐵) | |
5 | 4 | ex 115 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐴 = 𝐵 → 𝑥 = 𝐵)) |
6 | 3, 5 | jca 306 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝐴 = 𝐵 → 𝑥 = 𝐴) ∧ (𝐴 = 𝐵 → 𝑥 = 𝐵))) |
7 | 6 | eximi 1600 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → ∃𝑥((𝐴 = 𝐵 → 𝑥 = 𝐴) ∧ (𝐴 = 𝐵 → 𝑥 = 𝐵))) |
8 | pm3.43 602 | . . . . 5 ⊢ (((𝐴 = 𝐵 → 𝑥 = 𝐴) ∧ (𝐴 = 𝐵 → 𝑥 = 𝐵)) → (𝐴 = 𝐵 → (𝑥 = 𝐴 ∧ 𝑥 = 𝐵))) | |
9 | 8 | eximi 1600 | . . . 4 ⊢ (∃𝑥((𝐴 = 𝐵 → 𝑥 = 𝐴) ∧ (𝐴 = 𝐵 → 𝑥 = 𝐵)) → ∃𝑥(𝐴 = 𝐵 → (𝑥 = 𝐴 ∧ 𝑥 = 𝐵))) |
10 | 2, 7, 9 | mp2b 8 | . . 3 ⊢ ∃𝑥(𝐴 = 𝐵 → (𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
11 | 10 | 19.37aiv 1675 | . 2 ⊢ (𝐴 = 𝐵 → ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
12 | eqtr2 2196 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐵) → 𝐴 = 𝐵) | |
13 | 12 | exlimiv 1598 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵) → 𝐴 = 𝐵) |
14 | 11, 13 | impbii 126 | 1 ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 Vcvv 2739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-v 2741 |
This theorem is referenced by: eqvincf 2864 |
Copyright terms: Public domain | W3C validator |