![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 19.41vvvv | GIF version |
Description: Theorem 19.41 of [Margaris] p. 90 with 4 quantifiers. (Contributed by FL, 14-Jul-2007.) |
Ref | Expression |
---|---|
19.41vvvv | ⊢ (∃𝑤∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (∃𝑤∃𝑥∃𝑦∃𝑧𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.41vvv 1904 | . . 3 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦∃𝑧𝜑 ∧ 𝜓)) | |
2 | 1 | exbii 1605 | . 2 ⊢ (∃𝑤∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ ∃𝑤(∃𝑥∃𝑦∃𝑧𝜑 ∧ 𝜓)) |
3 | 19.41v 1902 | . 2 ⊢ (∃𝑤(∃𝑥∃𝑦∃𝑧𝜑 ∧ 𝜓) ↔ (∃𝑤∃𝑥∃𝑦∃𝑧𝜑 ∧ 𝜓)) | |
4 | 2, 3 | bitri 184 | 1 ⊢ (∃𝑤∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (∃𝑤∃𝑥∃𝑦∃𝑧𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |