ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.41vvvv GIF version

Theorem 19.41vvvv 1898
Description: Theorem 19.41 of [Margaris] p. 90 with 4 quantifiers. (Contributed by FL, 14-Jul-2007.)
Assertion
Ref Expression
19.41vvvv (∃𝑤𝑥𝑦𝑧(𝜑𝜓) ↔ (∃𝑤𝑥𝑦𝑧𝜑𝜓))
Distinct variable groups:   𝜓,𝑤   𝜓,𝑥   𝜓,𝑦   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 19.41vvvv
StepHypRef Expression
1 19.41vvv 1897 . . 3 (∃𝑥𝑦𝑧(𝜑𝜓) ↔ (∃𝑥𝑦𝑧𝜑𝜓))
21exbii 1598 . 2 (∃𝑤𝑥𝑦𝑧(𝜑𝜓) ↔ ∃𝑤(∃𝑥𝑦𝑧𝜑𝜓))
3 19.41v 1895 . 2 (∃𝑤(∃𝑥𝑦𝑧𝜑𝜓) ↔ (∃𝑤𝑥𝑦𝑧𝜑𝜓))
42, 3bitri 183 1 (∃𝑤𝑥𝑦𝑧(𝜑𝜓) ↔ (∃𝑤𝑥𝑦𝑧𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator