Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.41vvvv | GIF version |
Description: Theorem 19.41 of [Margaris] p. 90 with 4 quantifiers. (Contributed by FL, 14-Jul-2007.) |
Ref | Expression |
---|---|
19.41vvvv | ⊢ (∃𝑤∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (∃𝑤∃𝑥∃𝑦∃𝑧𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.41vvv 1897 | . . 3 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦∃𝑧𝜑 ∧ 𝜓)) | |
2 | 1 | exbii 1598 | . 2 ⊢ (∃𝑤∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ ∃𝑤(∃𝑥∃𝑦∃𝑧𝜑 ∧ 𝜓)) |
3 | 19.41v 1895 | . 2 ⊢ (∃𝑤(∃𝑥∃𝑦∃𝑧𝜑 ∧ 𝜓) ↔ (∃𝑤∃𝑥∃𝑦∃𝑧𝜑 ∧ 𝜓)) | |
4 | 2, 3 | bitri 183 | 1 ⊢ (∃𝑤∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (∃𝑤∃𝑥∃𝑦∃𝑧𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |