Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exbii | GIF version |
Description: Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.) |
Ref | Expression |
---|---|
exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
exbii | ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbi 1597 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) | |
2 | exbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | mpg 1444 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 2exbii 1599 3exbii 1600 exancom 1601 excom13 1682 exrot4 1684 eeor 1688 sbcof2 1803 sbequ8 1840 sbidm 1844 sborv 1883 19.41vv 1896 19.41vvv 1897 19.41vvvv 1898 exdistr 1902 19.42vvv 1905 exdistr2 1907 3exdistr 1908 4exdistr 1909 eean 1924 eeeanv 1926 ee4anv 1927 2sb5 1976 2sb5rf 1982 sbel2x 1991 sbexyz 1996 sbex 1997 exsb 2001 2exsb 2002 sb8eu 2032 sb8euh 2042 eu1 2044 eu2 2063 2moswapdc 2109 2exeu 2111 exists1 2115 clelab 2296 clabel 2297 sbabel 2339 rexbii2 2481 r2exf 2488 nfrexdya 2506 r19.41 2625 r19.43 2628 cbvreuvw 2702 isset 2736 rexv 2748 ceqsex2 2770 ceqsex3v 2772 gencbvex 2776 ceqsrexv 2860 rexab 2892 rexrab2 2897 euxfrdc 2916 euind 2917 reu6 2919 reu3 2920 2reuswapdc 2934 reuind 2935 sbccomlem 3029 rmo2ilem 3044 rexun 3307 reupick3 3412 abn0r 3439 abn0m 3440 rabn0m 3442 rexsns 3622 exsnrex 3625 snprc 3648 euabsn2 3652 reusn 3654 eusn 3657 elunirab 3809 unipr 3810 uniun 3815 uniin 3816 iuncom4 3880 dfiun2g 3905 iunn0m 3933 iunxiun 3954 disjnim 3980 cbvopab2 4063 cbvopab2v 4066 unopab 4068 zfnuleu 4113 0ex 4116 vnex 4120 inex1 4123 intexabim 4138 iinexgm 4140 inuni 4141 unidif0 4153 axpweq 4157 zfpow 4161 axpow2 4162 axpow3 4163 vpwex 4165 zfpair2 4195 mss 4211 exss 4212 opm 4219 eqvinop 4228 copsexg 4229 opabm 4265 iunopab 4266 zfun 4419 uniex2 4421 uniuni 4436 rexxfrd 4448 dtruex 4543 zfinf2 4573 elxp2 4629 opeliunxp 4666 xpiundi 4669 xpiundir 4670 elvvv 4674 eliunxp 4750 rexiunxp 4753 relop 4761 elco 4777 opelco2g 4779 cnvco 4796 cnvuni 4797 dfdm3 4798 dfrn2 4799 dfrn3 4800 elrng 4802 dfdm4 4803 eldm2g 4807 dmun 4818 dmin 4819 dmiun 4820 dmuni 4821 dmopab 4822 dmi 4826 dmmrnm 4830 elrn 4854 rnopab 4858 dmcosseq 4882 dmres 4912 elres 4927 elsnres 4928 dfima2 4955 elima3 4960 imadmrn 4963 imai 4967 args 4980 rniun 5021 ssrnres 5053 dmsnm 5076 dmsnopg 5082 elxp4 5098 elxp5 5099 cnvresima 5100 mptpreima 5104 dfco2 5110 coundi 5112 coundir 5113 resco 5115 imaco 5116 rnco 5117 coiun 5120 coi1 5126 coass 5129 xpcom 5157 dffun2 5208 imadif 5278 imainlem 5279 funimaexglem 5281 fun11iun 5463 f11o 5475 brprcneu 5489 nfvres 5529 fndmin 5603 abrexco 5738 imaiun 5739 dfoprab2 5900 cbvoprab2 5926 rexrnmpo 5968 opabex3d 6100 opabex3 6101 abexssex 6104 abexex 6105 oprabrexex2 6109 releldm2 6164 dfopab2 6168 dfoprab3s 6169 cnvoprab 6213 brtpos2 6230 tfr1onlemaccex 6327 tfrcllembxssdm 6335 tfrcllemaccex 6340 domen 6729 mapsnen 6789 xpsnen 6799 xpcomco 6804 xpassen 6808 fimax2gtri 6879 supelti 6979 cc1 7227 subhalfnqq 7376 ltbtwnnq 7378 prnmaxl 7450 prnminu 7451 prarloc 7465 genpdflem 7469 genpassl 7486 genpassu 7487 ltexprlemm 7562 2rexuz 9541 seq3f1olemp 10458 cbvsum 11323 cbvprod 11521 nnwosdc 11994 inffinp1 12384 ctiunctal 12396 unct 12397 isbasis2g 12837 tgval2 12845 ntreq0 12926 lmff 13043 metrest 13300 bj-axempty 13928 bj-axempty2 13929 bj-vprc 13931 bdinex1 13934 bj-zfpair2 13945 bj-uniex2 13951 bj-d0clsepcl 13960 |
Copyright terms: Public domain | W3C validator |