![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exbii | GIF version |
Description: Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.) |
Ref | Expression |
---|---|
exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
exbii | ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbi 1615 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) | |
2 | exbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | mpg 1462 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 2exbii 1617 3exbii 1618 exancom 1619 excom13 1700 exrot4 1702 eeor 1706 sbcof2 1821 sbequ8 1858 sbidm 1862 sborv 1902 19.41vv 1915 19.41vvv 1916 19.41vvvv 1917 exdistr 1921 19.42vvv 1924 exdistr2 1926 3exdistr 1927 4exdistr 1928 eean 1947 eeeanv 1949 ee4anv 1950 2sb5 1999 2sb5rf 2005 sbel2x 2014 sbexyz 2019 sbex 2020 exsb 2024 2exsb 2025 sb8eu 2055 sb8euh 2065 eu1 2067 eu2 2086 2moswapdc 2132 2exeu 2134 exists1 2138 clelab 2319 clabel 2320 sbabel 2363 rexbii2 2505 r2exf 2512 nfrexdya 2530 r19.41 2649 r19.43 2652 cbvreuvw 2732 isset 2766 rexv 2778 ceqsex2 2800 ceqsex3v 2802 gencbvex 2806 ceqsrexv 2890 rexab 2922 rexrab2 2927 euxfrdc 2946 euind 2947 reu6 2949 reu3 2950 2reuswapdc 2964 reuind 2965 sbccomlem 3060 rmo2ilem 3075 rexun 3339 reupick3 3444 abn0r 3471 abn0m 3472 rabn0m 3474 rexsns 3657 exsnrex 3660 snprc 3683 euabsn2 3687 reusn 3689 eusn 3692 elunirab 3848 unipr 3849 uniun 3854 uniin 3855 iuncom4 3919 dfiun2g 3944 iunn0m 3973 iunxiun 3994 disjnim 4020 cbvopab2 4103 cbvopab2v 4106 unopab 4108 zfnuleu 4153 0ex 4156 vnex 4160 inex1 4163 intexabim 4181 iinexgm 4183 inuni 4184 unidif0 4196 axpweq 4200 zfpow 4204 axpow2 4205 axpow3 4206 vpwex 4208 zfpair2 4239 mss 4255 exss 4256 opm 4263 eqvinop 4272 copsexg 4273 opabm 4311 iunopab 4312 zfun 4465 uniex2 4467 uniuni 4482 rexxfrd 4494 dtruex 4591 zfinf2 4621 elxp2 4677 opeliunxp 4714 xpiundi 4717 xpiundir 4718 elvvv 4722 eliunxp 4801 rexiunxp 4804 relop 4812 elco 4828 opelco2g 4830 cnvco 4847 cnvuni 4848 dfdm3 4849 dfrn2 4850 dfrn3 4851 elrng 4853 dfdm4 4854 eldm2g 4858 dmun 4869 dmin 4870 dmiun 4871 dmuni 4872 dmopab 4873 dmi 4877 dmmrnm 4881 elrn 4905 rnopab 4909 dmcosseq 4933 dmres 4963 elres 4978 elsnres 4979 dfima2 5007 elima3 5012 imadmrn 5015 imai 5021 args 5034 rniun 5076 ssrnres 5108 dmsnm 5131 dmsnopg 5137 elxp4 5153 elxp5 5154 cnvresima 5155 mptpreima 5159 dfco2 5165 coundi 5167 coundir 5168 resco 5170 imaco 5171 rnco 5172 coiun 5175 coi1 5181 coass 5184 xpcom 5212 dffun2 5264 imadif 5334 imainlem 5335 funimaexglem 5337 fun11iun 5521 f11o 5533 brprcneu 5547 nfvres 5588 fndmin 5665 abrexco 5802 imaiun 5803 dfoprab2 5965 cbvoprab2 5991 rexrnmpo 6034 opabex3d 6173 opabex3 6174 abexssex 6177 abexex 6178 oprabrexex2 6182 uchoice 6190 releldm2 6238 dfopab2 6242 dfoprab3s 6243 cnvoprab 6287 brtpos2 6304 tfr1onlemaccex 6401 tfrcllembxssdm 6409 tfrcllemaccex 6414 domen 6805 mapsnen 6865 xpsnen 6875 xpcomco 6880 xpassen 6884 fimax2gtri 6957 supelti 7061 cc1 7325 subhalfnqq 7474 ltbtwnnq 7476 prnmaxl 7548 prnminu 7549 prarloc 7563 genpdflem 7567 genpassl 7584 genpassu 7585 ltexprlemm 7660 2rexuz 9647 seq3f1olemp 10586 cbvsum 11503 cbvprod 11701 nnwosdc 12176 4sqlem12 12540 inffinp1 12586 ctiunctal 12598 unct 12599 isbasis2g 14213 tgval2 14219 ntreq0 14300 lmff 14417 metrest 14674 bj-axempty 15385 bj-axempty2 15386 bj-vprc 15388 bdinex1 15391 bj-zfpair2 15402 bj-uniex2 15408 bj-d0clsepcl 15417 |
Copyright terms: Public domain | W3C validator |