| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exbii | GIF version | ||
| Description: Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.) |
| Ref | Expression |
|---|---|
| exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| exbii | ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbi 1628 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) | |
| 2 | exbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | mpg 1475 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2exbii 1630 3exbii 1631 exancom 1632 excom13 1713 exrot4 1715 eeor 1719 sbcof2 1834 sbequ8 1871 sbidm 1875 sborv 1915 19.41vv 1928 19.41vvv 1929 19.41vvvv 1930 exdistr 1934 19.42vvv 1937 exdistr2 1939 3exdistr 1940 4exdistr 1941 eean 1960 eeeanv 1962 ee4anv 1963 2sb5 2012 2sb5rf 2018 sbel2x 2027 sbexyz 2032 sbex 2033 exsb 2037 2exsb 2038 sb8eu 2068 sb8euh 2078 eu1 2080 eu2 2099 2moswapdc 2145 2exeu 2147 exists1 2151 clelab 2332 clabel 2333 sbabel 2376 rexbii2 2518 r2exf 2525 nfrexdya 2543 r19.41 2662 r19.43 2665 cbvreuvw 2745 isset 2780 rexv 2792 ceqsex2 2815 ceqsex3v 2817 gencbvex 2821 ceqsrexv 2907 rexab 2939 rexrab2 2944 euxfrdc 2963 euind 2964 reu6 2966 reu3 2967 2reuswapdc 2981 reuind 2982 sbccomlem 3077 rmo2ilem 3092 rexun 3357 reupick3 3462 abn0r 3489 abn0m 3490 rabn0m 3492 rexsns 3677 exsnrex 3680 snprc 3703 euabsn2 3707 reusn 3709 eusn 3712 snmb 3759 elunirab 3869 unipr 3870 uniun 3875 uniin 3876 iuncom4 3940 dfiun2g 3965 iunn0m 3994 iunxiun 4015 disjnim 4041 cbvopab2 4126 cbvopab2v 4129 unopab 4131 zfnuleu 4176 0ex 4179 vnex 4183 inex1 4186 intexabim 4204 iinexgm 4206 inuni 4207 unidif0 4219 axpweq 4223 zfpow 4227 axpow2 4228 axpow3 4229 vpwex 4231 zfpair2 4262 mss 4278 exss 4279 opm 4286 eqvinop 4295 copsexg 4296 opabm 4335 iunopab 4336 zfun 4489 uniex2 4491 uniuni 4506 rexxfrd 4518 dtruex 4615 zfinf2 4645 elxp2 4701 opeliunxp 4738 xpiundi 4741 xpiundir 4742 elvvv 4746 eliunxp 4825 rexiunxp 4828 relop 4836 elco 4852 opelco2g 4854 cnvco 4871 cnvuni 4872 dfdm3 4873 dfrn2 4874 dfrn3 4875 elrng 4877 dfdm4 4879 eldm2g 4883 dmun 4894 dmin 4895 dmiun 4896 dmuni 4897 dmopab 4898 dmi 4902 dmmrnm 4906 elrn 4930 rnopab 4934 dmcosseq 4959 dmres 4989 elres 5004 elsnres 5005 dfima2 5033 elima3 5038 imadmrn 5041 imai 5047 args 5060 rniun 5102 ssrnres 5134 dmsnm 5157 dmsnopg 5163 elxp4 5179 elxp5 5180 cnvresima 5181 mptpreima 5185 dfco2 5191 coundi 5193 coundir 5194 resco 5196 imaco 5197 rnco 5198 coiun 5201 coi1 5207 coass 5210 xpcom 5238 dffun2 5290 imadif 5363 imainlem 5364 funimaexglem 5366 fun11iun 5555 f11o 5567 brprcneu 5582 nfvres 5623 fndmin 5700 abrexco 5841 imaiun 5842 dfoprab2 6005 cbvoprab2 6031 rexrnmpo 6074 opabex3d 6219 opabex3 6220 abexssex 6223 abexex 6224 oprabrexex2 6228 uchoice 6236 releldm2 6284 dfopab2 6288 dfoprab3s 6289 cnvoprab 6333 brtpos2 6350 tfr1onlemaccex 6447 tfrcllembxssdm 6455 tfrcllemaccex 6460 domen 6853 mapsnen 6917 xpsnen 6931 xpcomco 6936 xpassen 6940 fimax2gtri 7013 supelti 7119 cc1 7397 subhalfnqq 7547 ltbtwnnq 7549 prnmaxl 7621 prnminu 7622 prarloc 7636 genpdflem 7640 genpassl 7657 genpassu 7658 ltexprlemm 7733 2rexuz 9723 seq3f1olemp 10682 cbvsum 11746 cbvprod 11944 nnwosdc 12435 4sqlem12 12800 inffinp1 12875 ctiunctal 12887 unct 12888 isbasis2g 14592 tgval2 14598 ntreq0 14679 lmff 14796 metrest 15053 upgrex 15774 bj-axempty 15967 bj-axempty2 15968 bj-vprc 15970 bdinex1 15973 bj-zfpair2 15984 bj-uniex2 15990 bj-d0clsepcl 15999 |
| Copyright terms: Public domain | W3C validator |