![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exbii | GIF version |
Description: Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.) |
Ref | Expression |
---|---|
exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
exbii | ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbi 1604 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) | |
2 | exbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | mpg 1451 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 2exbii 1606 3exbii 1607 exancom 1608 excom13 1689 exrot4 1691 eeor 1695 sbcof2 1810 sbequ8 1847 sbidm 1851 sborv 1890 19.41vv 1903 19.41vvv 1904 19.41vvvv 1905 exdistr 1909 19.42vvv 1912 exdistr2 1914 3exdistr 1915 4exdistr 1916 eean 1931 eeeanv 1933 ee4anv 1934 2sb5 1983 2sb5rf 1989 sbel2x 1998 sbexyz 2003 sbex 2004 exsb 2008 2exsb 2009 sb8eu 2039 sb8euh 2049 eu1 2051 eu2 2070 2moswapdc 2116 2exeu 2118 exists1 2122 clelab 2303 clabel 2304 sbabel 2346 rexbii2 2488 r2exf 2495 nfrexdya 2513 r19.41 2632 r19.43 2635 cbvreuvw 2710 isset 2744 rexv 2756 ceqsex2 2778 ceqsex3v 2780 gencbvex 2784 ceqsrexv 2868 rexab 2900 rexrab2 2905 euxfrdc 2924 euind 2925 reu6 2927 reu3 2928 2reuswapdc 2942 reuind 2943 sbccomlem 3038 rmo2ilem 3053 rexun 3316 reupick3 3421 abn0r 3448 abn0m 3449 rabn0m 3451 rexsns 3632 exsnrex 3635 snprc 3658 euabsn2 3662 reusn 3664 eusn 3667 elunirab 3823 unipr 3824 uniun 3829 uniin 3830 iuncom4 3894 dfiun2g 3919 iunn0m 3948 iunxiun 3969 disjnim 3995 cbvopab2 4078 cbvopab2v 4081 unopab 4083 zfnuleu 4128 0ex 4131 vnex 4135 inex1 4138 intexabim 4153 iinexgm 4155 inuni 4156 unidif0 4168 axpweq 4172 zfpow 4176 axpow2 4177 axpow3 4178 vpwex 4180 zfpair2 4211 mss 4227 exss 4228 opm 4235 eqvinop 4244 copsexg 4245 opabm 4281 iunopab 4282 zfun 4435 uniex2 4437 uniuni 4452 rexxfrd 4464 dtruex 4559 zfinf2 4589 elxp2 4645 opeliunxp 4682 xpiundi 4685 xpiundir 4686 elvvv 4690 eliunxp 4767 rexiunxp 4770 relop 4778 elco 4794 opelco2g 4796 cnvco 4813 cnvuni 4814 dfdm3 4815 dfrn2 4816 dfrn3 4817 elrng 4819 dfdm4 4820 eldm2g 4824 dmun 4835 dmin 4836 dmiun 4837 dmuni 4838 dmopab 4839 dmi 4843 dmmrnm 4847 elrn 4871 rnopab 4875 dmcosseq 4899 dmres 4929 elres 4944 elsnres 4945 dfima2 4973 elima3 4978 imadmrn 4981 imai 4985 args 4998 rniun 5040 ssrnres 5072 dmsnm 5095 dmsnopg 5101 elxp4 5117 elxp5 5118 cnvresima 5119 mptpreima 5123 dfco2 5129 coundi 5131 coundir 5132 resco 5134 imaco 5135 rnco 5136 coiun 5139 coi1 5145 coass 5148 xpcom 5176 dffun2 5227 imadif 5297 imainlem 5298 funimaexglem 5300 fun11iun 5483 f11o 5495 brprcneu 5509 nfvres 5549 fndmin 5624 abrexco 5760 imaiun 5761 dfoprab2 5922 cbvoprab2 5948 rexrnmpo 5990 opabex3d 6122 opabex3 6123 abexssex 6126 abexex 6127 oprabrexex2 6131 releldm2 6186 dfopab2 6190 dfoprab3s 6191 cnvoprab 6235 brtpos2 6252 tfr1onlemaccex 6349 tfrcllembxssdm 6357 tfrcllemaccex 6362 domen 6751 mapsnen 6811 xpsnen 6821 xpcomco 6826 xpassen 6830 fimax2gtri 6901 supelti 7001 cc1 7264 subhalfnqq 7413 ltbtwnnq 7415 prnmaxl 7487 prnminu 7488 prarloc 7502 genpdflem 7506 genpassl 7523 genpassu 7524 ltexprlemm 7599 2rexuz 9582 seq3f1olemp 10502 cbvsum 11368 cbvprod 11566 nnwosdc 12040 inffinp1 12430 ctiunctal 12442 unct 12443 isbasis2g 13548 tgval2 13554 ntreq0 13635 lmff 13752 metrest 14009 bj-axempty 14648 bj-axempty2 14649 bj-vprc 14651 bdinex1 14654 bj-zfpair2 14665 bj-uniex2 14671 bj-d0clsepcl 14680 |
Copyright terms: Public domain | W3C validator |