| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exbii | GIF version | ||
| Description: Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.) |
| Ref | Expression |
|---|---|
| exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| exbii | ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbi 1618 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) | |
| 2 | exbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | mpg 1465 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2exbii 1620 3exbii 1621 exancom 1622 excom13 1703 exrot4 1705 eeor 1709 sbcof2 1824 sbequ8 1861 sbidm 1865 sborv 1905 19.41vv 1918 19.41vvv 1919 19.41vvvv 1920 exdistr 1924 19.42vvv 1927 exdistr2 1929 3exdistr 1930 4exdistr 1931 eean 1950 eeeanv 1952 ee4anv 1953 2sb5 2002 2sb5rf 2008 sbel2x 2017 sbexyz 2022 sbex 2023 exsb 2027 2exsb 2028 sb8eu 2058 sb8euh 2068 eu1 2070 eu2 2089 2moswapdc 2135 2exeu 2137 exists1 2141 clelab 2322 clabel 2323 sbabel 2366 rexbii2 2508 r2exf 2515 nfrexdya 2533 r19.41 2652 r19.43 2655 cbvreuvw 2735 isset 2769 rexv 2781 ceqsex2 2804 ceqsex3v 2806 gencbvex 2810 ceqsrexv 2894 rexab 2926 rexrab2 2931 euxfrdc 2950 euind 2951 reu6 2953 reu3 2954 2reuswapdc 2968 reuind 2969 sbccomlem 3064 rmo2ilem 3079 rexun 3344 reupick3 3449 abn0r 3476 abn0m 3477 rabn0m 3479 rexsns 3662 exsnrex 3665 snprc 3688 euabsn2 3692 reusn 3694 eusn 3697 elunirab 3853 unipr 3854 uniun 3859 uniin 3860 iuncom4 3924 dfiun2g 3949 iunn0m 3978 iunxiun 3999 disjnim 4025 cbvopab2 4108 cbvopab2v 4111 unopab 4113 zfnuleu 4158 0ex 4161 vnex 4165 inex1 4168 intexabim 4186 iinexgm 4188 inuni 4189 unidif0 4201 axpweq 4205 zfpow 4209 axpow2 4210 axpow3 4211 vpwex 4213 zfpair2 4244 mss 4260 exss 4261 opm 4268 eqvinop 4277 copsexg 4278 opabm 4316 iunopab 4317 zfun 4470 uniex2 4472 uniuni 4487 rexxfrd 4499 dtruex 4596 zfinf2 4626 elxp2 4682 opeliunxp 4719 xpiundi 4722 xpiundir 4723 elvvv 4727 eliunxp 4806 rexiunxp 4809 relop 4817 elco 4833 opelco2g 4835 cnvco 4852 cnvuni 4853 dfdm3 4854 dfrn2 4855 dfrn3 4856 elrng 4858 dfdm4 4859 eldm2g 4863 dmun 4874 dmin 4875 dmiun 4876 dmuni 4877 dmopab 4878 dmi 4882 dmmrnm 4886 elrn 4910 rnopab 4914 dmcosseq 4938 dmres 4968 elres 4983 elsnres 4984 dfima2 5012 elima3 5017 imadmrn 5020 imai 5026 args 5039 rniun 5081 ssrnres 5113 dmsnm 5136 dmsnopg 5142 elxp4 5158 elxp5 5159 cnvresima 5160 mptpreima 5164 dfco2 5170 coundi 5172 coundir 5173 resco 5175 imaco 5176 rnco 5177 coiun 5180 coi1 5186 coass 5189 xpcom 5217 dffun2 5269 imadif 5339 imainlem 5340 funimaexglem 5342 fun11iun 5528 f11o 5540 brprcneu 5554 nfvres 5595 fndmin 5672 abrexco 5809 imaiun 5810 dfoprab2 5973 cbvoprab2 5999 rexrnmpo 6042 opabex3d 6187 opabex3 6188 abexssex 6191 abexex 6192 oprabrexex2 6196 uchoice 6204 releldm2 6252 dfopab2 6256 dfoprab3s 6257 cnvoprab 6301 brtpos2 6318 tfr1onlemaccex 6415 tfrcllembxssdm 6423 tfrcllemaccex 6428 domen 6819 mapsnen 6879 xpsnen 6889 xpcomco 6894 xpassen 6898 fimax2gtri 6971 supelti 7077 cc1 7348 subhalfnqq 7498 ltbtwnnq 7500 prnmaxl 7572 prnminu 7573 prarloc 7587 genpdflem 7591 genpassl 7608 genpassu 7609 ltexprlemm 7684 2rexuz 9673 seq3f1olemp 10624 cbvsum 11542 cbvprod 11740 nnwosdc 12231 4sqlem12 12596 inffinp1 12671 ctiunctal 12683 unct 12684 isbasis2g 14365 tgval2 14371 ntreq0 14452 lmff 14569 metrest 14826 bj-axempty 15623 bj-axempty2 15624 bj-vprc 15626 bdinex1 15629 bj-zfpair2 15640 bj-uniex2 15646 bj-d0clsepcl 15655 |
| Copyright terms: Public domain | W3C validator |