![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exbii | GIF version |
Description: Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.) |
Ref | Expression |
---|---|
exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
exbii | ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbi 1604 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) | |
2 | exbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | mpg 1451 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 2exbii 1606 3exbii 1607 exancom 1608 excom13 1689 exrot4 1691 eeor 1695 sbcof2 1810 sbequ8 1847 sbidm 1851 sborv 1890 19.41vv 1903 19.41vvv 1904 19.41vvvv 1905 exdistr 1909 19.42vvv 1912 exdistr2 1914 3exdistr 1915 4exdistr 1916 eean 1931 eeeanv 1933 ee4anv 1934 2sb5 1983 2sb5rf 1989 sbel2x 1998 sbexyz 2003 sbex 2004 exsb 2008 2exsb 2009 sb8eu 2039 sb8euh 2049 eu1 2051 eu2 2070 2moswapdc 2116 2exeu 2118 exists1 2122 clelab 2303 clabel 2304 sbabel 2346 rexbii2 2488 r2exf 2495 nfrexdya 2513 r19.41 2632 r19.43 2635 cbvreuvw 2709 isset 2743 rexv 2755 ceqsex2 2777 ceqsex3v 2779 gencbvex 2783 ceqsrexv 2867 rexab 2899 rexrab2 2904 euxfrdc 2923 euind 2924 reu6 2926 reu3 2927 2reuswapdc 2941 reuind 2942 sbccomlem 3037 rmo2ilem 3052 rexun 3315 reupick3 3420 abn0r 3447 abn0m 3448 rabn0m 3450 rexsns 3631 exsnrex 3634 snprc 3657 euabsn2 3661 reusn 3663 eusn 3666 elunirab 3822 unipr 3823 uniun 3828 uniin 3829 iuncom4 3893 dfiun2g 3918 iunn0m 3947 iunxiun 3968 disjnim 3994 cbvopab2 4077 cbvopab2v 4080 unopab 4082 zfnuleu 4127 0ex 4130 vnex 4134 inex1 4137 intexabim 4152 iinexgm 4154 inuni 4155 unidif0 4167 axpweq 4171 zfpow 4175 axpow2 4176 axpow3 4177 vpwex 4179 zfpair2 4210 mss 4226 exss 4227 opm 4234 eqvinop 4243 copsexg 4244 opabm 4280 iunopab 4281 zfun 4434 uniex2 4436 uniuni 4451 rexxfrd 4463 dtruex 4558 zfinf2 4588 elxp2 4644 opeliunxp 4681 xpiundi 4684 xpiundir 4685 elvvv 4689 eliunxp 4766 rexiunxp 4769 relop 4777 elco 4793 opelco2g 4795 cnvco 4812 cnvuni 4813 dfdm3 4814 dfrn2 4815 dfrn3 4816 elrng 4818 dfdm4 4819 eldm2g 4823 dmun 4834 dmin 4835 dmiun 4836 dmuni 4837 dmopab 4838 dmi 4842 dmmrnm 4846 elrn 4870 rnopab 4874 dmcosseq 4898 dmres 4928 elres 4943 elsnres 4944 dfima2 4972 elima3 4977 imadmrn 4980 imai 4984 args 4997 rniun 5039 ssrnres 5071 dmsnm 5094 dmsnopg 5100 elxp4 5116 elxp5 5117 cnvresima 5118 mptpreima 5122 dfco2 5128 coundi 5130 coundir 5131 resco 5133 imaco 5134 rnco 5135 coiun 5138 coi1 5144 coass 5147 xpcom 5175 dffun2 5226 imadif 5296 imainlem 5297 funimaexglem 5299 fun11iun 5482 f11o 5494 brprcneu 5508 nfvres 5548 fndmin 5623 abrexco 5759 imaiun 5760 dfoprab2 5921 cbvoprab2 5947 rexrnmpo 5989 opabex3d 6121 opabex3 6122 abexssex 6125 abexex 6126 oprabrexex2 6130 releldm2 6185 dfopab2 6189 dfoprab3s 6190 cnvoprab 6234 brtpos2 6251 tfr1onlemaccex 6348 tfrcllembxssdm 6356 tfrcllemaccex 6361 domen 6750 mapsnen 6810 xpsnen 6820 xpcomco 6825 xpassen 6829 fimax2gtri 6900 supelti 7000 cc1 7263 subhalfnqq 7412 ltbtwnnq 7414 prnmaxl 7486 prnminu 7487 prarloc 7501 genpdflem 7505 genpassl 7522 genpassu 7523 ltexprlemm 7598 2rexuz 9581 seq3f1olemp 10501 cbvsum 11367 cbvprod 11565 nnwosdc 12039 inffinp1 12429 ctiunctal 12441 unct 12442 isbasis2g 13515 tgval2 13521 ntreq0 13602 lmff 13719 metrest 13976 bj-axempty 14615 bj-axempty2 14616 bj-vprc 14618 bdinex1 14621 bj-zfpair2 14632 bj-uniex2 14638 bj-d0clsepcl 14647 |
Copyright terms: Public domain | W3C validator |