| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exbii | GIF version | ||
| Description: Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.) |
| Ref | Expression |
|---|---|
| exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| exbii | ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbi 1650 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) | |
| 2 | exbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | mpg 1497 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2exbii 1652 3exbii 1653 exancom 1654 excom13 1735 exrot4 1737 eeor 1741 sbcof2 1856 sbequ8 1893 sbidm 1897 sborv 1937 19.41vv 1950 19.41vvv 1951 19.41vvvv 1952 exdistr 1956 19.42vvv 1959 exdistr2 1961 3exdistr 1962 4exdistr 1963 eean 1982 eeeanv 1984 ee4anv 1985 2sb5 2034 2sb5rf 2040 sbel2x 2049 sbexyz 2054 sbex 2055 exsb 2059 2exsb 2060 sb8eu 2090 sb8euh 2100 eu1 2102 eu2 2122 2moswapdc 2168 2exeu 2170 exists1 2174 clelab 2355 clabel 2356 sbabel 2399 rexbii2 2541 r2exf 2548 nfrexdya 2566 r19.41 2686 r19.43 2689 cbvreuvw 2771 isset 2806 rexv 2818 ceqsex2 2841 ceqsex3v 2843 gencbvex 2847 ceqsrexv 2933 rexab 2965 rexrab2 2970 euxfrdc 2989 euind 2990 reu6 2992 reu3 2993 2reuswapdc 3007 reuind 3008 sbccomlem 3103 rmo2ilem 3119 rexun 3384 reupick3 3489 abn0r 3516 abn0m 3517 rabn0m 3519 rexsns 3705 exsnrex 3708 snprc 3731 euabsn2 3735 reusn 3737 eusn 3740 snmb 3787 elunirab 3900 unipr 3901 uniun 3906 uniin 3907 iuncom4 3971 dfiun2g 3996 iunn0m 4025 iunxiun 4046 disjnim 4072 cbvopab2 4157 cbvopab2v 4160 unopab 4162 zfnuleu 4207 0ex 4210 vnex 4214 inex1 4217 intexabim 4235 iinexgm 4237 inuni 4238 unidif0 4250 axpweq 4254 zfpow 4258 axpow2 4259 axpow3 4260 vpwex 4262 zfpair2 4293 mss 4311 exss 4312 opm 4319 eqvinop 4328 copsexg 4329 opabm 4368 iunopab 4369 zfun 4524 uniex2 4526 uniuni 4541 rexxfrd 4553 dtruex 4650 zfinf2 4680 elxp2 4736 opeliunxp 4773 xpiundi 4776 xpiundir 4777 elvvv 4781 eliunxp 4860 rexiunxp 4863 relop 4871 elco 4887 opelco2g 4889 cnvco 4906 cnvuni 4907 dfdm3 4908 dfrn2 4909 dfrn3 4910 elrng 4912 dfdm4 4914 eldm2g 4918 dmun 4929 dmin 4930 dmiun 4931 dmuni 4932 dmopab 4933 dmi 4937 reldmm 4941 dmmrnm 4942 elrn 4966 rnopab 4970 dmcosseq 4995 dmres 5025 elres 5040 elsnres 5041 dfima2 5069 elima3 5074 imadmrn 5077 imai 5083 args 5096 rniun 5138 ssrnres 5170 dmsnm 5193 dmsnopg 5199 elxp4 5215 elxp5 5216 cnvresima 5217 mptpreima 5221 dfco2 5227 coundi 5229 coundir 5230 resco 5232 imaco 5233 rnco 5234 coiun 5237 coi1 5243 coass 5246 xpcom 5274 dffun2 5327 imadif 5400 imainlem 5401 funimaexglem 5403 fun11iun 5592 f11o 5604 brprcneu 5619 nfvres 5662 fndmin 5741 abrexco 5882 imaiun 5883 dfoprab2 6050 cbvoprab2 6076 rexrnmpo 6119 opabex3d 6264 opabex3 6265 abexssex 6268 abexex 6269 oprabrexex2 6273 uchoice 6281 releldm2 6329 dfopab2 6333 dfoprab3s 6334 cnvoprab 6378 brtpos2 6395 tfr1onlemaccex 6492 tfrcllembxssdm 6500 tfrcllemaccex 6505 domen 6898 mapsnen 6962 xpsnen 6976 xpcomco 6981 xpassen 6985 fimax2gtri 7059 supelti 7165 cc1 7447 subhalfnqq 7597 ltbtwnnq 7599 prnmaxl 7671 prnminu 7672 prarloc 7686 genpdflem 7690 genpassl 7707 genpassu 7708 ltexprlemm 7783 2rexuz 9773 seq3f1olemp 10732 cbvsum 11866 cbvprod 12064 nnwosdc 12555 4sqlem12 12920 inffinp1 12995 ctiunctal 13007 unct 13008 isbasis2g 14713 tgval2 14719 ntreq0 14800 lmff 14917 metrest 15174 upgrex 15897 bj-axempty 16214 bj-axempty2 16215 bj-vprc 16217 bdinex1 16220 bj-zfpair2 16231 bj-uniex2 16237 bj-d0clsepcl 16246 |
| Copyright terms: Public domain | W3C validator |