![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exbii | GIF version |
Description: Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.) |
Ref | Expression |
---|---|
exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
exbii | ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbi 1615 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) | |
2 | exbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | mpg 1462 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 2exbii 1617 3exbii 1618 exancom 1619 excom13 1700 exrot4 1702 eeor 1706 sbcof2 1821 sbequ8 1858 sbidm 1862 sborv 1902 19.41vv 1915 19.41vvv 1916 19.41vvvv 1917 exdistr 1921 19.42vvv 1924 exdistr2 1926 3exdistr 1927 4exdistr 1928 eean 1947 eeeanv 1949 ee4anv 1950 2sb5 1999 2sb5rf 2005 sbel2x 2014 sbexyz 2019 sbex 2020 exsb 2024 2exsb 2025 sb8eu 2055 sb8euh 2065 eu1 2067 eu2 2086 2moswapdc 2132 2exeu 2134 exists1 2138 clelab 2319 clabel 2320 sbabel 2363 rexbii2 2505 r2exf 2512 nfrexdya 2530 r19.41 2649 r19.43 2652 cbvreuvw 2732 isset 2766 rexv 2778 ceqsex2 2801 ceqsex3v 2803 gencbvex 2807 ceqsrexv 2891 rexab 2923 rexrab2 2928 euxfrdc 2947 euind 2948 reu6 2950 reu3 2951 2reuswapdc 2965 reuind 2966 sbccomlem 3061 rmo2ilem 3076 rexun 3340 reupick3 3445 abn0r 3472 abn0m 3473 rabn0m 3475 rexsns 3658 exsnrex 3661 snprc 3684 euabsn2 3688 reusn 3690 eusn 3693 elunirab 3849 unipr 3850 uniun 3855 uniin 3856 iuncom4 3920 dfiun2g 3945 iunn0m 3974 iunxiun 3995 disjnim 4021 cbvopab2 4104 cbvopab2v 4107 unopab 4109 zfnuleu 4154 0ex 4157 vnex 4161 inex1 4164 intexabim 4182 iinexgm 4184 inuni 4185 unidif0 4197 axpweq 4201 zfpow 4205 axpow2 4206 axpow3 4207 vpwex 4209 zfpair2 4240 mss 4256 exss 4257 opm 4264 eqvinop 4273 copsexg 4274 opabm 4312 iunopab 4313 zfun 4466 uniex2 4468 uniuni 4483 rexxfrd 4495 dtruex 4592 zfinf2 4622 elxp2 4678 opeliunxp 4715 xpiundi 4718 xpiundir 4719 elvvv 4723 eliunxp 4802 rexiunxp 4805 relop 4813 elco 4829 opelco2g 4831 cnvco 4848 cnvuni 4849 dfdm3 4850 dfrn2 4851 dfrn3 4852 elrng 4854 dfdm4 4855 eldm2g 4859 dmun 4870 dmin 4871 dmiun 4872 dmuni 4873 dmopab 4874 dmi 4878 dmmrnm 4882 elrn 4906 rnopab 4910 dmcosseq 4934 dmres 4964 elres 4979 elsnres 4980 dfima2 5008 elima3 5013 imadmrn 5016 imai 5022 args 5035 rniun 5077 ssrnres 5109 dmsnm 5132 dmsnopg 5138 elxp4 5154 elxp5 5155 cnvresima 5156 mptpreima 5160 dfco2 5166 coundi 5168 coundir 5169 resco 5171 imaco 5172 rnco 5173 coiun 5176 coi1 5182 coass 5185 xpcom 5213 dffun2 5265 imadif 5335 imainlem 5336 funimaexglem 5338 fun11iun 5522 f11o 5534 brprcneu 5548 nfvres 5589 fndmin 5666 abrexco 5803 imaiun 5804 dfoprab2 5966 cbvoprab2 5992 rexrnmpo 6035 opabex3d 6175 opabex3 6176 abexssex 6179 abexex 6180 oprabrexex2 6184 uchoice 6192 releldm2 6240 dfopab2 6244 dfoprab3s 6245 cnvoprab 6289 brtpos2 6306 tfr1onlemaccex 6403 tfrcllembxssdm 6411 tfrcllemaccex 6416 domen 6807 mapsnen 6867 xpsnen 6877 xpcomco 6882 xpassen 6886 fimax2gtri 6959 supelti 7063 cc1 7327 subhalfnqq 7476 ltbtwnnq 7478 prnmaxl 7550 prnminu 7551 prarloc 7565 genpdflem 7569 genpassl 7586 genpassu 7587 ltexprlemm 7662 2rexuz 9650 seq3f1olemp 10589 cbvsum 11506 cbvprod 11704 nnwosdc 12179 4sqlem12 12543 inffinp1 12589 ctiunctal 12601 unct 12602 isbasis2g 14224 tgval2 14230 ntreq0 14311 lmff 14428 metrest 14685 bj-axempty 15455 bj-axempty2 15456 bj-vprc 15458 bdinex1 15461 bj-zfpair2 15472 bj-uniex2 15478 bj-d0clsepcl 15487 |
Copyright terms: Public domain | W3C validator |