Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exbii | GIF version |
Description: Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.) |
Ref | Expression |
---|---|
exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
exbii | ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbi 1592 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) | |
2 | exbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | mpg 1439 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 2exbii 1594 3exbii 1595 exancom 1596 excom13 1677 exrot4 1679 eeor 1683 sbcof2 1798 sbequ8 1835 sbidm 1839 sborv 1878 19.41vv 1891 19.41vvv 1892 19.41vvvv 1893 exdistr 1897 19.42vvv 1900 exdistr2 1902 3exdistr 1903 4exdistr 1904 eean 1919 eeeanv 1921 ee4anv 1922 2sb5 1971 2sb5rf 1977 sbel2x 1986 sbexyz 1991 sbex 1992 exsb 1996 2exsb 1997 sb8eu 2027 sb8euh 2037 eu1 2039 eu2 2058 2moswapdc 2104 2exeu 2106 exists1 2110 clelab 2292 clabel 2293 sbabel 2335 rexbii2 2477 r2exf 2484 nfrexdya 2502 r19.41 2621 r19.43 2624 cbvreuvw 2698 isset 2732 rexv 2744 ceqsex2 2766 ceqsex3v 2768 gencbvex 2772 ceqsrexv 2856 rexab 2888 rexrab2 2893 euxfrdc 2912 euind 2913 reu6 2915 reu3 2916 2reuswapdc 2930 reuind 2931 sbccomlem 3025 rmo2ilem 3040 rexun 3302 reupick3 3407 abn0r 3433 abn0m 3434 rabn0m 3436 rexsns 3615 exsnrex 3618 snprc 3641 euabsn2 3645 reusn 3647 eusn 3650 elunirab 3802 unipr 3803 uniun 3808 uniin 3809 iuncom4 3873 dfiun2g 3898 iunn0m 3926 iunxiun 3947 disjnim 3973 cbvopab2 4056 cbvopab2v 4059 unopab 4061 zfnuleu 4106 0ex 4109 vnex 4113 inex1 4116 intexabim 4131 iinexgm 4133 inuni 4134 unidif0 4146 axpweq 4150 zfpow 4154 axpow2 4155 axpow3 4156 vpwex 4158 zfpair2 4188 mss 4204 exss 4205 opm 4212 eqvinop 4221 copsexg 4222 opabm 4258 iunopab 4259 zfun 4412 uniex2 4414 uniuni 4429 rexxfrd 4441 dtruex 4536 zfinf2 4566 elxp2 4622 opeliunxp 4659 xpiundi 4662 xpiundir 4663 elvvv 4667 eliunxp 4743 rexiunxp 4746 relop 4754 elco 4770 opelco2g 4772 cnvco 4789 cnvuni 4790 dfdm3 4791 dfrn2 4792 dfrn3 4793 elrng 4795 dfdm4 4796 eldm2g 4800 dmun 4811 dmin 4812 dmiun 4813 dmuni 4814 dmopab 4815 dmi 4819 dmmrnm 4823 elrn 4847 rnopab 4851 dmcosseq 4875 dmres 4905 elres 4920 elsnres 4921 dfima2 4948 elima3 4953 imadmrn 4956 imai 4960 args 4973 rniun 5014 ssrnres 5046 dmsnm 5069 dmsnopg 5075 elxp4 5091 elxp5 5092 cnvresima 5093 mptpreima 5097 dfco2 5103 coundi 5105 coundir 5106 resco 5108 imaco 5109 rnco 5110 coiun 5113 coi1 5119 coass 5122 xpcom 5150 dffun2 5198 imadif 5268 imainlem 5269 funimaexglem 5271 fun11iun 5453 f11o 5465 brprcneu 5479 nfvres 5519 fndmin 5592 abrexco 5727 imaiun 5728 dfoprab2 5889 cbvoprab2 5915 rexrnmpo 5957 opabex3d 6089 opabex3 6090 abexssex 6093 abexex 6094 oprabrexex2 6098 releldm2 6153 dfopab2 6157 dfoprab3s 6158 cnvoprab 6202 brtpos2 6219 tfr1onlemaccex 6316 tfrcllembxssdm 6324 tfrcllemaccex 6329 domen 6717 mapsnen 6777 xpsnen 6787 xpcomco 6792 xpassen 6796 fimax2gtri 6867 supelti 6967 cc1 7206 subhalfnqq 7355 ltbtwnnq 7357 prnmaxl 7429 prnminu 7430 prarloc 7444 genpdflem 7448 genpassl 7465 genpassu 7466 ltexprlemm 7541 2rexuz 9520 seq3f1olemp 10437 cbvsum 11301 cbvprod 11499 nnwosdc 11972 inffinp1 12362 ctiunctal 12374 unct 12375 isbasis2g 12683 tgval2 12691 ntreq0 12772 lmff 12889 metrest 13146 bj-axempty 13775 bj-axempty2 13776 bj-vprc 13778 bdinex1 13781 bj-zfpair2 13792 bj-uniex2 13798 bj-d0clsepcl 13807 |
Copyright terms: Public domain | W3C validator |