Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.42v | GIF version |
Description: Special case of Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.42v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1513 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | 19.42h 1674 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wex 1479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1434 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-4 1497 ax-17 1513 ax-ial 1521 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: exdistr 1896 19.42vv 1898 19.42vvv 1899 4exdistr 1903 cbvex2 1909 2sb5 1970 2sb5rf 1976 rexcom4a 2748 ceqsex2 2764 reuind 2929 2rmorex 2930 sbccomlem 3023 bm1.3ii 4100 opm 4209 eqvinop 4218 uniuni 4426 elco 4767 dmopabss 4813 dmopab3 4814 mptpreima 5094 brprcneu 5476 relelfvdm 5515 fndmin 5589 fliftf 5764 dfoprab2 5883 dmoprab 5917 dmoprabss 5918 fnoprabg 5937 opabex3d 6084 opabex3 6085 eroveu 6586 dmaddpq 7314 dmmulpq 7315 prarloc 7438 ltexprlemopl 7536 ltexprlemlol 7537 ltexprlemopu 7538 ltexprlemupu 7539 shftdm 10758 ntreq0 12730 bdbm1.3ii 13666 |
Copyright terms: Public domain | W3C validator |