| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.42v | GIF version | ||
| Description: Special case of Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 19.42v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1572 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | 1 | 19.42h 1733 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exdistr 1956 19.42vv 1958 19.42vvv 1959 4exdistr 1963 cbvex2 1969 2sb5 2034 2sb5rf 2040 rexcom4a 2824 ceqsex2 2841 reuind 3008 2rmorex 3009 sbccomlem 3103 bm1.3ii 4204 opm 4319 eqvinop 4328 uniuni 4541 elco 4887 dmopabss 4934 dmopab3 4935 mptpreima 5221 brprcneu 5619 relelfvdm 5658 fndmin 5741 fliftf 5922 dfoprab2 6050 dmoprab 6084 dmoprabss 6085 fnoprabg 6104 opabex3d 6264 opabex3 6265 eroveu 6771 dmaddpq 7562 dmmulpq 7563 prarloc 7686 ltexprlemopl 7784 ltexprlemlol 7785 ltexprlemopu 7786 ltexprlemupu 7787 shftdm 11328 fngsum 13416 igsumvalx 13417 ntreq0 14800 bdbm1.3ii 16212 |
| Copyright terms: Public domain | W3C validator |