Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.42v | GIF version |
Description: Special case of Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.42v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1514 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | 19.42h 1675 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: exdistr 1897 19.42vv 1899 19.42vvv 1900 4exdistr 1904 cbvex2 1910 2sb5 1971 2sb5rf 1977 rexcom4a 2750 ceqsex2 2766 reuind 2931 2rmorex 2932 sbccomlem 3025 bm1.3ii 4103 opm 4212 eqvinop 4221 uniuni 4429 elco 4770 dmopabss 4816 dmopab3 4817 mptpreima 5097 brprcneu 5479 relelfvdm 5518 fndmin 5592 fliftf 5767 dfoprab2 5889 dmoprab 5923 dmoprabss 5924 fnoprabg 5943 opabex3d 6089 opabex3 6090 eroveu 6592 dmaddpq 7320 dmmulpq 7321 prarloc 7444 ltexprlemopl 7542 ltexprlemlol 7543 ltexprlemopu 7544 ltexprlemupu 7545 shftdm 10764 ntreq0 12772 bdbm1.3ii 13773 |
Copyright terms: Public domain | W3C validator |