| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.42v | GIF version | ||
| Description: Special case of Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 19.42v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1548 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | 1 | 19.42h 1709 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exdistr 1932 19.42vv 1934 19.42vvv 1935 4exdistr 1939 cbvex2 1945 2sb5 2010 2sb5rf 2016 rexcom4a 2795 ceqsex2 2812 reuind 2977 2rmorex 2978 sbccomlem 3072 bm1.3ii 4164 opm 4277 eqvinop 4286 uniuni 4497 elco 4843 dmopabss 4889 dmopab3 4890 mptpreima 5175 brprcneu 5568 relelfvdm 5607 fndmin 5686 fliftf 5867 dfoprab2 5991 dmoprab 6025 dmoprabss 6026 fnoprabg 6045 opabex3d 6205 opabex3 6206 eroveu 6712 dmaddpq 7491 dmmulpq 7492 prarloc 7615 ltexprlemopl 7713 ltexprlemlol 7714 ltexprlemopu 7715 ltexprlemupu 7716 shftdm 11104 fngsum 13191 igsumvalx 13192 ntreq0 14575 bdbm1.3ii 15789 |
| Copyright terms: Public domain | W3C validator |