| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.42v | GIF version | ||
| Description: Special case of Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 19.42v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1550 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | 1 | 19.42h 1711 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exdistr 1934 19.42vv 1936 19.42vvv 1937 4exdistr 1941 cbvex2 1947 2sb5 2012 2sb5rf 2018 rexcom4a 2801 ceqsex2 2818 reuind 2985 2rmorex 2986 sbccomlem 3080 bm1.3ii 4181 opm 4296 eqvinop 4305 uniuni 4516 elco 4862 dmopabss 4909 dmopab3 4910 mptpreima 5195 brprcneu 5592 relelfvdm 5631 fndmin 5710 fliftf 5891 dfoprab2 6015 dmoprab 6049 dmoprabss 6050 fnoprabg 6069 opabex3d 6229 opabex3 6230 eroveu 6736 dmaddpq 7527 dmmulpq 7528 prarloc 7651 ltexprlemopl 7749 ltexprlemlol 7750 ltexprlemopu 7751 ltexprlemupu 7752 shftdm 11248 fngsum 13335 igsumvalx 13336 ntreq0 14719 bdbm1.3ii 16026 |
| Copyright terms: Public domain | W3C validator |