| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 19.42v | GIF version | ||
| Description: Special case of Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| 19.42v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-17 1540 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | 1 | 19.42h 1701 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: exdistr 1924 19.42vv 1926 19.42vvv 1927 4exdistr 1931 cbvex2 1937 2sb5 2002 2sb5rf 2008 rexcom4a 2787 ceqsex2 2804 reuind 2969 2rmorex 2970 sbccomlem 3064 bm1.3ii 4154 opm 4267 eqvinop 4276 uniuni 4486 elco 4832 dmopabss 4878 dmopab3 4879 mptpreima 5163 brprcneu 5551 relelfvdm 5590 fndmin 5669 fliftf 5846 dfoprab2 5969 dmoprab 6003 dmoprabss 6004 fnoprabg 6023 opabex3d 6178 opabex3 6179 eroveu 6685 dmaddpq 7446 dmmulpq 7447 prarloc 7570 ltexprlemopl 7668 ltexprlemlol 7669 ltexprlemopu 7670 ltexprlemupu 7671 shftdm 10987 fngsum 13031 igsumvalx 13032 ntreq0 14368 bdbm1.3ii 15537 | 
| Copyright terms: Public domain | W3C validator |