| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.42v | GIF version | ||
| Description: Special case of Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 19.42v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1549 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | 1 | 19.42h 1710 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exdistr 1933 19.42vv 1935 19.42vvv 1936 4exdistr 1940 cbvex2 1946 2sb5 2011 2sb5rf 2017 rexcom4a 2796 ceqsex2 2813 reuind 2978 2rmorex 2979 sbccomlem 3073 bm1.3ii 4165 opm 4278 eqvinop 4287 uniuni 4498 elco 4844 dmopabss 4890 dmopab3 4891 mptpreima 5176 brprcneu 5569 relelfvdm 5608 fndmin 5687 fliftf 5868 dfoprab2 5992 dmoprab 6026 dmoprabss 6027 fnoprabg 6046 opabex3d 6206 opabex3 6207 eroveu 6713 dmaddpq 7492 dmmulpq 7493 prarloc 7616 ltexprlemopl 7714 ltexprlemlol 7715 ltexprlemopu 7716 ltexprlemupu 7717 shftdm 11133 fngsum 13220 igsumvalx 13221 ntreq0 14604 bdbm1.3ii 15827 |
| Copyright terms: Public domain | W3C validator |