ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.42v GIF version

Theorem 19.42v 1893
Description: Special case of Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.42v (∃𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem 19.42v
StepHypRef Expression
1 ax-17 1513 . 2 (𝜑 → ∀𝑥𝜑)
2119.42h 1674 1 (∃𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wex 1479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1434  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-4 1497  ax-17 1513  ax-ial 1521
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  exdistr  1896  19.42vv  1898  19.42vvv  1899  4exdistr  1903  cbvex2  1909  2sb5  1970  2sb5rf  1976  rexcom4a  2748  ceqsex2  2764  reuind  2929  2rmorex  2930  sbccomlem  3023  bm1.3ii  4100  opm  4209  eqvinop  4218  uniuni  4426  elco  4767  dmopabss  4813  dmopab3  4814  mptpreima  5094  brprcneu  5476  relelfvdm  5515  fndmin  5589  fliftf  5764  dfoprab2  5883  dmoprab  5917  dmoprabss  5918  fnoprabg  5937  opabex3d  6084  opabex3  6085  eroveu  6586  dmaddpq  7314  dmmulpq  7315  prarloc  7438  ltexprlemopl  7536  ltexprlemlol  7537  ltexprlemopu  7538  ltexprlemupu  7539  shftdm  10758  ntreq0  12730  bdbm1.3ii  13666
  Copyright terms: Public domain W3C validator