| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.42v | GIF version | ||
| Description: Special case of Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 19.42v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1540 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | 1 | 19.42h 1701 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exdistr 1924 19.42vv 1926 19.42vvv 1927 4exdistr 1931 cbvex2 1937 2sb5 2002 2sb5rf 2008 rexcom4a 2787 ceqsex2 2804 reuind 2969 2rmorex 2970 sbccomlem 3064 bm1.3ii 4155 opm 4268 eqvinop 4277 uniuni 4487 elco 4833 dmopabss 4879 dmopab3 4880 mptpreima 5164 brprcneu 5554 relelfvdm 5593 fndmin 5672 fliftf 5849 dfoprab2 5973 dmoprab 6007 dmoprabss 6008 fnoprabg 6027 opabex3d 6187 opabex3 6188 eroveu 6694 dmaddpq 7465 dmmulpq 7466 prarloc 7589 ltexprlemopl 7687 ltexprlemlol 7688 ltexprlemopu 7689 ltexprlemupu 7690 shftdm 11006 fngsum 13092 igsumvalx 13093 ntreq0 14476 bdbm1.3ii 15645 |
| Copyright terms: Public domain | W3C validator |