![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 19.42v | GIF version |
Description: Special case of Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.42v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1537 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | 19.42h 1698 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: exdistr 1921 19.42vv 1923 19.42vvv 1924 4exdistr 1928 cbvex2 1934 2sb5 1999 2sb5rf 2005 rexcom4a 2784 ceqsex2 2801 reuind 2966 2rmorex 2967 sbccomlem 3061 bm1.3ii 4151 opm 4264 eqvinop 4273 uniuni 4483 elco 4829 dmopabss 4875 dmopab3 4876 mptpreima 5160 brprcneu 5548 relelfvdm 5587 fndmin 5666 fliftf 5843 dfoprab2 5966 dmoprab 6000 dmoprabss 6001 fnoprabg 6020 opabex3d 6175 opabex3 6176 eroveu 6682 dmaddpq 7441 dmmulpq 7442 prarloc 7565 ltexprlemopl 7663 ltexprlemlol 7664 ltexprlemopu 7665 ltexprlemupu 7666 shftdm 10969 fngsum 12974 igsumvalx 12975 ntreq0 14311 bdbm1.3ii 15453 |
Copyright terms: Public domain | W3C validator |