ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.41vvv GIF version

Theorem 19.41vvv 1927
Description: Theorem 19.41 of [Margaris] p. 90 with 3 quantifiers. (Contributed by NM, 30-Apr-1995.)
Assertion
Ref Expression
19.41vvv (∃𝑥𝑦𝑧(𝜑𝜓) ↔ (∃𝑥𝑦𝑧𝜑𝜓))
Distinct variable groups:   𝜓,𝑥   𝜓,𝑦   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem 19.41vvv
StepHypRef Expression
1 19.41vv 1926 . . 3 (∃𝑦𝑧(𝜑𝜓) ↔ (∃𝑦𝑧𝜑𝜓))
21exbii 1627 . 2 (∃𝑥𝑦𝑧(𝜑𝜓) ↔ ∃𝑥(∃𝑦𝑧𝜑𝜓))
3 19.41v 1925 . 2 (∃𝑥(∃𝑦𝑧𝜑𝜓) ↔ (∃𝑥𝑦𝑧𝜑𝜓))
42, 3bitri 184 1 (∃𝑥𝑦𝑧(𝜑𝜓) ↔ (∃𝑥𝑦𝑧𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.41vvvv  1928  eloprabga  6022  dftpos3  6338
  Copyright terms: Public domain W3C validator