| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.41vvv | GIF version | ||
| Description: Theorem 19.41 of [Margaris] p. 90 with 3 quantifiers. (Contributed by NM, 30-Apr-1995.) |
| Ref | Expression |
|---|---|
| 19.41vvv | ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦∃𝑧𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.41vv 1918 | . . 3 ⊢ (∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (∃𝑦∃𝑧𝜑 ∧ 𝜓)) | |
| 2 | 1 | exbii 1619 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ ∃𝑥(∃𝑦∃𝑧𝜑 ∧ 𝜓)) |
| 3 | 19.41v 1917 | . 2 ⊢ (∃𝑥(∃𝑦∃𝑧𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦∃𝑧𝜑 ∧ 𝜓)) | |
| 4 | 2, 3 | bitri 184 | 1 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦∃𝑧𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 19.41vvvv 1920 eloprabga 6013 dftpos3 6329 |
| Copyright terms: Public domain | W3C validator |