Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.41v | GIF version |
Description: Special case of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.41v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1519 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | 1 | 19.41h 1678 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 19.41vv 1896 19.41vvv 1897 19.41vvvv 1898 exdistrv 1903 eeeanv 1926 gencbvex 2776 euxfrdc 2916 euind 2917 dfdif3 3237 r19.9rmv 3506 opabm 4265 eliunxp 4750 relop 4761 dmuni 4821 dmres 4912 dminss 5025 imainss 5026 ssrnres 5053 cnvresima 5100 resco 5115 rnco 5117 coass 5129 xpcom 5157 f11o 5475 fvelrnb 5544 rnoprab 5936 domen 6729 xpassen 6808 genpassl 7486 genpassu 7487 |
Copyright terms: Public domain | W3C validator |