| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.41v | GIF version | ||
| Description: Special case of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 19.41v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1550 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | 1 | 19.41h 1709 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 19.41vv 1928 19.41vvv 1929 19.41vvvv 1930 exdistrv 1935 eeeanv 1962 gencbvex 2821 euxfrdc 2963 euind 2964 dfdif3 3287 r19.9rmv 3556 opabm 4334 eliunxp 4824 relop 4835 dmuni 4896 dmres 4988 dminss 5105 imainss 5106 ssrnres 5133 cnvresima 5180 resco 5195 rnco 5197 coass 5209 xpcom 5237 f11o 5566 fvelrnb 5638 rnoprab 6040 domen 6852 xpassen 6939 genpassl 7652 genpassu 7653 |
| Copyright terms: Public domain | W3C validator |