ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.41v GIF version

Theorem 19.41v 1902
Description: Special case of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.41v (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 19.41v
StepHypRef Expression
1 ax-17 1526 . 2 (𝜓 → ∀𝑥𝜓)
2119.41h 1685 1 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.41vv  1903  19.41vvv  1904  19.41vvvv  1905  exdistrv  1910  eeeanv  1933  gencbvex  2784  euxfrdc  2924  euind  2925  dfdif3  3246  r19.9rmv  3515  opabm  4281  eliunxp  4767  relop  4778  dmuni  4838  dmres  4929  dminss  5044  imainss  5045  ssrnres  5072  cnvresima  5119  resco  5134  rnco  5136  coass  5148  xpcom  5176  f11o  5495  fvelrnb  5564  rnoprab  5958  domen  6751  xpassen  6830  genpassl  7523  genpassu  7524
  Copyright terms: Public domain W3C validator