Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.41v | GIF version |
Description: Special case of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.41v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1519 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | 1 | 19.41h 1678 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 19.41vv 1896 19.41vvv 1897 19.41vvvv 1898 exdistrv 1903 eeeanv 1926 gencbvex 2776 euxfrdc 2916 euind 2917 dfdif3 3237 r19.9rmv 3505 opabm 4263 eliunxp 4748 relop 4759 dmuni 4819 dmres 4910 dminss 5023 imainss 5024 ssrnres 5051 cnvresima 5098 resco 5113 rnco 5115 coass 5127 xpcom 5155 f11o 5473 fvelrnb 5542 rnoprab 5933 domen 6725 xpassen 6804 genpassl 7473 genpassu 7474 |
Copyright terms: Public domain | W3C validator |