| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.41v | GIF version | ||
| Description: Special case of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 19.41v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1540 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | 1 | 19.41h 1699 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 19.41vv 1918 19.41vvv 1919 19.41vvvv 1920 exdistrv 1925 eeeanv 1952 gencbvex 2810 euxfrdc 2950 euind 2951 dfdif3 3273 r19.9rmv 3542 opabm 4315 eliunxp 4805 relop 4816 dmuni 4876 dmres 4967 dminss 5084 imainss 5085 ssrnres 5112 cnvresima 5159 resco 5174 rnco 5176 coass 5188 xpcom 5216 f11o 5537 fvelrnb 5608 rnoprab 6005 domen 6810 xpassen 6889 genpassl 7591 genpassu 7592 |
| Copyright terms: Public domain | W3C validator |