Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.41v | GIF version |
Description: Special case of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.41v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1514 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | 1 | 19.41h 1673 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 19.41vv 1891 19.41vvv 1892 19.41vvvv 1893 exdistrv 1898 eeeanv 1921 gencbvex 2772 euxfrdc 2912 euind 2913 dfdif3 3232 r19.9rmv 3500 opabm 4258 eliunxp 4743 relop 4754 dmuni 4814 dmres 4905 dminss 5018 imainss 5019 ssrnres 5046 cnvresima 5093 resco 5108 rnco 5110 coass 5122 xpcom 5150 f11o 5465 fvelrnb 5534 rnoprab 5925 domen 6717 xpassen 6796 genpassl 7465 genpassu 7466 |
Copyright terms: Public domain | W3C validator |