![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 19.41v | GIF version |
Description: Special case of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.41v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1537 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | 1 | 19.41h 1696 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 19.41vv 1915 19.41vvv 1916 19.41vvvv 1917 exdistrv 1922 eeeanv 1949 gencbvex 2806 euxfrdc 2946 euind 2947 dfdif3 3269 r19.9rmv 3538 opabm 4311 eliunxp 4801 relop 4812 dmuni 4872 dmres 4963 dminss 5080 imainss 5081 ssrnres 5108 cnvresima 5155 resco 5170 rnco 5172 coass 5184 xpcom 5212 f11o 5533 fvelrnb 5604 rnoprab 6001 domen 6805 xpassen 6884 genpassl 7584 genpassu 7585 |
Copyright terms: Public domain | W3C validator |