| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.41v | GIF version | ||
| Description: Special case of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 19.41v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1572 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | 1 | 19.41h 1731 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 19.41vv 1950 19.41vvv 1951 19.41vvvv 1952 exdistrv 1957 eeeanv 1984 gencbvex 2847 euxfrdc 2989 euind 2990 dfdif3 3314 r19.9rmv 3583 opabm 4368 eliunxp 4858 relop 4869 dmuni 4930 dmres 5022 dminss 5139 imainss 5140 ssrnres 5167 cnvresima 5214 resco 5229 rnco 5231 coass 5243 xpcom 5271 f11o 5601 fvelrnb 5674 rnoprab 6078 domen 6890 xpassen 6977 genpassl 7699 genpassu 7700 |
| Copyright terms: Public domain | W3C validator |