| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 19.42vvvv | GIF version | ||
| Description: Theorem 19.42 of [Margaris] p. 90 with 4 quantifiers. (Contributed by Jim Kingdon, 23-Nov-2019.) | 
| Ref | Expression | 
|---|---|
| 19.42vvvv | ⊢ (∃𝑤∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑤∃𝑥∃𝑦∃𝑧𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.42vv 1926 | . . 3 ⊢ (∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑦∃𝑧𝜓)) | |
| 2 | 1 | 2exbii 1620 | . 2 ⊢ (∃𝑤∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ ∃𝑤∃𝑥(𝜑 ∧ ∃𝑦∃𝑧𝜓)) | 
| 3 | 19.42vv 1926 | . 2 ⊢ (∃𝑤∃𝑥(𝜑 ∧ ∃𝑦∃𝑧𝜓) ↔ (𝜑 ∧ ∃𝑤∃𝑥∃𝑦∃𝑧𝜓)) | |
| 4 | 2, 3 | bitri 184 | 1 ⊢ (∃𝑤∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑤∃𝑥∃𝑦∃𝑧𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: ceqsex8v 2809 enq0tr 7501 | 
| Copyright terms: Public domain | W3C validator |