| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.42vvvv | GIF version | ||
| Description: Theorem 19.42 of [Margaris] p. 90 with 4 quantifiers. (Contributed by Jim Kingdon, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| 19.42vvvv | ⊢ (∃𝑤∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑤∃𝑥∃𝑦∃𝑧𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42vv 1936 | . . 3 ⊢ (∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑦∃𝑧𝜓)) | |
| 2 | 1 | 2exbii 1630 | . 2 ⊢ (∃𝑤∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ ∃𝑤∃𝑥(𝜑 ∧ ∃𝑦∃𝑧𝜓)) |
| 3 | 19.42vv 1936 | . 2 ⊢ (∃𝑤∃𝑥(𝜑 ∧ ∃𝑦∃𝑧𝜓) ↔ (𝜑 ∧ ∃𝑤∃𝑥∃𝑦∃𝑧𝜓)) | |
| 4 | 2, 3 | bitri 184 | 1 ⊢ (∃𝑤∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑤∃𝑥∃𝑦∃𝑧𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ceqsex8v 2820 enq0tr 7567 |
| Copyright terms: Public domain | W3C validator |