ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.45 GIF version

Theorem 19.45 1663
Description: Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
Hypothesis
Ref Expression
19.45.1 𝑥𝜑
Assertion
Ref Expression
19.45 (∃𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓))

Proof of Theorem 19.45
StepHypRef Expression
1 19.43 1608 . 2 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓))
2 19.45.1 . . . 4 𝑥𝜑
3219.9 1624 . . 3 (∃𝑥𝜑𝜑)
43orbi1i 753 . 2 ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓))
51, 4bitri 183 1 (∃𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wb 104  wo 698  wnf 1440  wex 1472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-nf 1441
This theorem is referenced by:  eeor  1675
  Copyright terms: Public domain W3C validator