ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.43 GIF version

Theorem 19.43 1628
Description: Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 2-Feb-2015.)
Assertion
Ref Expression
19.43 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓))

Proof of Theorem 19.43
StepHypRef Expression
1 hbe1 1495 . . . 4 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)
2 hbe1 1495 . . . 4 (∃𝑥𝜓 → ∀𝑥𝑥𝜓)
31, 2hbor 1546 . . 3 ((∃𝑥𝜑 ∨ ∃𝑥𝜓) → ∀𝑥(∃𝑥𝜑 ∨ ∃𝑥𝜓))
4 19.8a 1590 . . . 4 (𝜑 → ∃𝑥𝜑)
5 19.8a 1590 . . . 4 (𝜓 → ∃𝑥𝜓)
64, 5orim12i 759 . . 3 ((𝜑𝜓) → (∃𝑥𝜑 ∨ ∃𝑥𝜓))
73, 6exlimih 1593 . 2 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∨ ∃𝑥𝜓))
8 orc 712 . . . 4 (𝜑 → (𝜑𝜓))
98eximi 1600 . . 3 (∃𝑥𝜑 → ∃𝑥(𝜑𝜓))
10 olc 711 . . . 4 (𝜓 → (𝜑𝜓))
1110eximi 1600 . . 3 (∃𝑥𝜓 → ∃𝑥(𝜑𝜓))
129, 11jaoi 716 . 2 ((∃𝑥𝜑 ∨ ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
137, 12impbii 126 1 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wb 105  wo 708  wex 1492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-ial 1534
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.44  1682  19.45  1683  19.34  1684  sborv  1890  r19.43  2635  rexun  3316  unipr  3824  uniun  3829  unopab  4083  dmun  4835  coundi  5131  coundir  5132
  Copyright terms: Public domain W3C validator