| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.43 | GIF version | ||
| Description: Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 2-Feb-2015.) |
| Ref | Expression |
|---|---|
| 19.43 | ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbe1 1509 | . . . 4 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
| 2 | hbe1 1509 | . . . 4 ⊢ (∃𝑥𝜓 → ∀𝑥∃𝑥𝜓) | |
| 3 | 1, 2 | hbor 1560 | . . 3 ⊢ ((∃𝑥𝜑 ∨ ∃𝑥𝜓) → ∀𝑥(∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
| 4 | 19.8a 1604 | . . . 4 ⊢ (𝜑 → ∃𝑥𝜑) | |
| 5 | 19.8a 1604 | . . . 4 ⊢ (𝜓 → ∃𝑥𝜓) | |
| 6 | 4, 5 | orim12i 760 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
| 7 | 3, 6 | exlimih 1607 | . 2 ⊢ (∃𝑥(𝜑 ∨ 𝜓) → (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
| 8 | orc 713 | . . . 4 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
| 9 | 8 | eximi 1614 | . . 3 ⊢ (∃𝑥𝜑 → ∃𝑥(𝜑 ∨ 𝜓)) |
| 10 | olc 712 | . . . 4 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 11 | 10 | eximi 1614 | . . 3 ⊢ (∃𝑥𝜓 → ∃𝑥(𝜑 ∨ 𝜓)) |
| 12 | 9, 11 | jaoi 717 | . 2 ⊢ ((∃𝑥𝜑 ∨ ∃𝑥𝜓) → ∃𝑥(𝜑 ∨ 𝜓)) |
| 13 | 7, 12 | impbii 126 | 1 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 709 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 19.44 1696 19.45 1697 19.34 1698 sborv 1905 r19.43 2655 rexun 3344 unipr 3854 uniun 3859 unopab 4113 dmun 4874 coundi 5172 coundir 5173 |
| Copyright terms: Public domain | W3C validator |