Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.43 | GIF version |
Description: Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 2-Feb-2015.) |
Ref | Expression |
---|---|
19.43 | ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbe1 1483 | . . . 4 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
2 | hbe1 1483 | . . . 4 ⊢ (∃𝑥𝜓 → ∀𝑥∃𝑥𝜓) | |
3 | 1, 2 | hbor 1534 | . . 3 ⊢ ((∃𝑥𝜑 ∨ ∃𝑥𝜓) → ∀𝑥(∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
4 | 19.8a 1578 | . . . 4 ⊢ (𝜑 → ∃𝑥𝜑) | |
5 | 19.8a 1578 | . . . 4 ⊢ (𝜓 → ∃𝑥𝜓) | |
6 | 4, 5 | orim12i 749 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
7 | 3, 6 | exlimih 1581 | . 2 ⊢ (∃𝑥(𝜑 ∨ 𝜓) → (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
8 | orc 702 | . . . 4 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
9 | 8 | eximi 1588 | . . 3 ⊢ (∃𝑥𝜑 → ∃𝑥(𝜑 ∨ 𝜓)) |
10 | olc 701 | . . . 4 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
11 | 10 | eximi 1588 | . . 3 ⊢ (∃𝑥𝜓 → ∃𝑥(𝜑 ∨ 𝜓)) |
12 | 9, 11 | jaoi 706 | . 2 ⊢ ((∃𝑥𝜑 ∨ ∃𝑥𝜓) → ∃𝑥(𝜑 ∨ 𝜓)) |
13 | 7, 12 | impbii 125 | 1 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 698 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 19.44 1670 19.45 1671 19.34 1672 sborv 1878 r19.43 2624 rexun 3302 unipr 3803 uniun 3808 unopab 4061 dmun 4811 coundi 5105 coundir 5106 |
Copyright terms: Public domain | W3C validator |