ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3bitrrd GIF version

Theorem 3bitrrd 214
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitrd.1 (𝜑 → (𝜓𝜒))
3bitrd.2 (𝜑 → (𝜒𝜃))
3bitrd.3 (𝜑 → (𝜃𝜏))
Assertion
Ref Expression
3bitrrd (𝜑 → (𝜏𝜓))

Proof of Theorem 3bitrrd
StepHypRef Expression
1 3bitrd.3 . 2 (𝜑 → (𝜃𝜏))
2 3bitrd.1 . . 3 (𝜑 → (𝜓𝜒))
3 3bitrd.2 . . 3 (𝜑 → (𝜒𝜃))
42, 3bitr2d 188 . 2 (𝜑 → (𝜃𝜓))
51, 4bitr3d 189 1 (𝜑 → (𝜏𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  srpospr  7745  divap0b  8600  divfl0  10252  cjreb  10830  cnrest2  13030
  Copyright terms: Public domain W3C validator