Step | Hyp | Ref
| Expression |
1 | | cntop1 12841 |
. . . 4
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) |
2 | 1 | a1i 9 |
. . 3
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)) |
3 | | eqid 2165 |
. . . . . . . 8
⊢ ∪ 𝐽 =
∪ 𝐽 |
4 | | eqid 2165 |
. . . . . . . 8
⊢ ∪ 𝐾 =
∪ 𝐾 |
5 | 3, 4 | cnf 12844 |
. . . . . . 7
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
6 | 5 | ffnd 5338 |
. . . . . 6
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 Fn ∪ 𝐽) |
7 | 6 | a1i 9 |
. . . . 5
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 Fn ∪ 𝐽)) |
8 | | simp2 988 |
. . . . 5
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → ran 𝐹 ⊆ 𝐵) |
9 | 7, 8 | jctird 315 |
. . . 4
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 Fn ∪ 𝐽 ∧ ran 𝐹 ⊆ 𝐵))) |
10 | | df-f 5192 |
. . . 4
⊢ (𝐹:∪
𝐽⟶𝐵 ↔ (𝐹 Fn ∪ 𝐽 ∧ ran 𝐹 ⊆ 𝐵)) |
11 | 9, 10 | syl6ibr 161 |
. . 3
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶𝐵)) |
12 | 2, 11 | jcad 305 |
. 2
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵))) |
13 | | cntop1 12841 |
. . . . 5
⊢ (𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)) → 𝐽 ∈ Top) |
14 | 13 | adantl 275 |
. . . 4
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐽 ∈ Top) |
15 | 3 | toptopon 12656 |
. . . . . 6
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
16 | 14, 15 | sylib 121 |
. . . . 5
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
17 | | resttopon 12811 |
. . . . . . 7
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ⊆ 𝑌) → (𝐾 ↾t 𝐵) ∈ (TopOn‘𝐵)) |
18 | 17 | 3adant2 1006 |
. . . . . 6
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐾 ↾t 𝐵) ∈ (TopOn‘𝐵)) |
19 | 18 | adantr 274 |
. . . . 5
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐾 ↾t 𝐵) ∈ (TopOn‘𝐵)) |
20 | | simpr 109 |
. . . . 5
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) |
21 | | cnf2 12845 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ (𝐾
↾t 𝐵)
∈ (TopOn‘𝐵)
∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐹:∪ 𝐽⟶𝐵) |
22 | 16, 19, 20, 21 | syl3anc 1228 |
. . . 4
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → 𝐹:∪ 𝐽⟶𝐵) |
23 | 14, 22 | jca 304 |
. . 3
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))) → (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) |
24 | 23 | ex 114 |
. 2
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)) → (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵))) |
25 | | vex 2729 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
26 | 25 | inex1 4116 |
. . . . . . . 8
⊢ (𝑥 ∩ 𝐵) ∈ V |
27 | 26 | a1i 9 |
. . . . . . 7
⊢ ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) ∧ 𝑥 ∈ 𝐾) → (𝑥 ∩ 𝐵) ∈ V) |
28 | | simpl1 990 |
. . . . . . . 8
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → 𝐾 ∈ (TopOn‘𝑌)) |
29 | | toponmax 12663 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ 𝐾) |
30 | 28, 29 | syl 14 |
. . . . . . . . 9
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → 𝑌 ∈ 𝐾) |
31 | | simpl3 992 |
. . . . . . . . 9
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → 𝐵 ⊆ 𝑌) |
32 | 30, 31 | ssexd 4122 |
. . . . . . . 8
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → 𝐵 ∈ V) |
33 | | elrest 12563 |
. . . . . . . 8
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ V) → (𝑦 ∈ (𝐾 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐾 𝑦 = (𝑥 ∩ 𝐵))) |
34 | 28, 32, 33 | syl2anc 409 |
. . . . . . 7
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → (𝑦 ∈ (𝐾 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐾 𝑦 = (𝑥 ∩ 𝐵))) |
35 | | imaeq2 4942 |
. . . . . . . . 9
⊢ (𝑦 = (𝑥 ∩ 𝐵) → (◡𝐹 “ 𝑦) = (◡𝐹 “ (𝑥 ∩ 𝐵))) |
36 | 35 | eleq1d 2235 |
. . . . . . . 8
⊢ (𝑦 = (𝑥 ∩ 𝐵) → ((◡𝐹 “ 𝑦) ∈ 𝐽 ↔ (◡𝐹 “ (𝑥 ∩ 𝐵)) ∈ 𝐽)) |
37 | 36 | adantl 275 |
. . . . . . 7
⊢ ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) ∧ 𝑦 = (𝑥 ∩ 𝐵)) → ((◡𝐹 “ 𝑦) ∈ 𝐽 ↔ (◡𝐹 “ (𝑥 ∩ 𝐵)) ∈ 𝐽)) |
38 | 27, 34, 37 | ralxfr2d 4442 |
. . . . . 6
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → (∀𝑦 ∈ (𝐾 ↾t 𝐵)(◡𝐹 “ 𝑦) ∈ 𝐽 ↔ ∀𝑥 ∈ 𝐾 (◡𝐹 “ (𝑥 ∩ 𝐵)) ∈ 𝐽)) |
39 | | simplrr 526 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) ∧ 𝑥 ∈ 𝐾) → 𝐹:∪ 𝐽⟶𝐵) |
40 | | ffun 5340 |
. . . . . . . . . 10
⊢ (𝐹:∪
𝐽⟶𝐵 → Fun 𝐹) |
41 | | inpreima 5611 |
. . . . . . . . . 10
⊢ (Fun
𝐹 → (◡𝐹 “ (𝑥 ∩ 𝐵)) = ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝐵))) |
42 | 39, 40, 41 | 3syl 17 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ (𝑥 ∩ 𝐵)) = ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝐵))) |
43 | | cnvimass 4967 |
. . . . . . . . . . . 12
⊢ (◡𝐹 “ 𝑥) ⊆ dom 𝐹 |
44 | | cnvimarndm 4968 |
. . . . . . . . . . . 12
⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 |
45 | 43, 44 | sseqtrri 3177 |
. . . . . . . . . . 11
⊢ (◡𝐹 “ 𝑥) ⊆ (◡𝐹 “ ran 𝐹) |
46 | | simpll2 1027 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) ∧ 𝑥 ∈ 𝐾) → ran 𝐹 ⊆ 𝐵) |
47 | | imass2 4980 |
. . . . . . . . . . . 12
⊢ (ran
𝐹 ⊆ 𝐵 → (◡𝐹 “ ran 𝐹) ⊆ (◡𝐹 “ 𝐵)) |
48 | 46, 47 | syl 14 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ ran 𝐹) ⊆ (◡𝐹 “ 𝐵)) |
49 | 45, 48 | sstrid 3153 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ 𝑥) ⊆ (◡𝐹 “ 𝐵)) |
50 | | df-ss 3129 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ 𝑥) ⊆ (◡𝐹 “ 𝐵) ↔ ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝐵)) = (◡𝐹 “ 𝑥)) |
51 | 49, 50 | sylib 121 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) ∧ 𝑥 ∈ 𝐾) → ((◡𝐹 “ 𝑥) ∩ (◡𝐹 “ 𝐵)) = (◡𝐹 “ 𝑥)) |
52 | 42, 51 | eqtrd 2198 |
. . . . . . . 8
⊢ ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ (𝑥 ∩ 𝐵)) = (◡𝐹 “ 𝑥)) |
53 | 52 | eleq1d 2235 |
. . . . . . 7
⊢ ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) ∧ 𝑥 ∈ 𝐾) → ((◡𝐹 “ (𝑥 ∩ 𝐵)) ∈ 𝐽 ↔ (◡𝐹 “ 𝑥) ∈ 𝐽)) |
54 | 53 | ralbidva 2462 |
. . . . . 6
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → (∀𝑥 ∈ 𝐾 (◡𝐹 “ (𝑥 ∩ 𝐵)) ∈ 𝐽 ↔ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
55 | | simprr 522 |
. . . . . . . 8
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → 𝐹:∪ 𝐽⟶𝐵) |
56 | 55, 31 | fssd 5350 |
. . . . . . 7
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → 𝐹:∪ 𝐽⟶𝑌) |
57 | 56 | biantrurd 303 |
. . . . . 6
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → (∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽 ↔ (𝐹:∪ 𝐽⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
58 | 38, 54, 57 | 3bitrrd 214 |
. . . . 5
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → ((𝐹:∪ 𝐽⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽) ↔ ∀𝑦 ∈ (𝐾 ↾t 𝐵)(◡𝐹 “ 𝑦) ∈ 𝐽)) |
59 | 55 | biantrurd 303 |
. . . . 5
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → (∀𝑦 ∈ (𝐾 ↾t 𝐵)(◡𝐹 “ 𝑦) ∈ 𝐽 ↔ (𝐹:∪ 𝐽⟶𝐵 ∧ ∀𝑦 ∈ (𝐾 ↾t 𝐵)(◡𝐹 “ 𝑦) ∈ 𝐽))) |
60 | 58, 59 | bitrd 187 |
. . . 4
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → ((𝐹:∪ 𝐽⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽) ↔ (𝐹:∪ 𝐽⟶𝐵 ∧ ∀𝑦 ∈ (𝐾 ↾t 𝐵)(◡𝐹 “ 𝑦) ∈ 𝐽))) |
61 | | simprl 521 |
. . . . . 6
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → 𝐽 ∈ Top) |
62 | 61, 15 | sylib 121 |
. . . . 5
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
63 | | iscn 12837 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝐾 ∈
(TopOn‘𝑌)) →
(𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:∪ 𝐽⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
64 | 62, 28, 63 | syl2anc 409 |
. . . 4
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:∪ 𝐽⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
65 | 18 | adantr 274 |
. . . . 5
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → (𝐾 ↾t 𝐵) ∈ (TopOn‘𝐵)) |
66 | | iscn 12837 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ (𝐾
↾t 𝐵)
∈ (TopOn‘𝐵))
→ (𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)) ↔ (𝐹:∪ 𝐽⟶𝐵 ∧ ∀𝑦 ∈ (𝐾 ↾t 𝐵)(◡𝐹 “ 𝑦) ∈ 𝐽))) |
67 | 62, 65, 66 | syl2anc 409 |
. . . 4
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → (𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)) ↔ (𝐹:∪ 𝐽⟶𝐵 ∧ ∀𝑦 ∈ (𝐾 ↾t 𝐵)(◡𝐹 “ 𝑦) ∈ 𝐽))) |
68 | 60, 64, 67 | 3bitr4d 219 |
. . 3
⊢ (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)))) |
69 | 68 | ex 114 |
. 2
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → ((𝐽 ∈ Top ∧ 𝐹:∪ 𝐽⟶𝐵) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵))))) |
70 | 12, 24, 69 | pm5.21ndd 695 |
1
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)))) |