ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrest2 GIF version

Theorem cnrest2 14404
Description: Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Hankins, 10-Jul-2009.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnrest2 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))))

Proof of Theorem cnrest2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntop1 14369 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
21a1i 9 . . 3 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top))
3 eqid 2193 . . . . . . . 8 𝐽 = 𝐽
4 eqid 2193 . . . . . . . 8 𝐾 = 𝐾
53, 4cnf 14372 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
65ffnd 5404 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 Fn 𝐽)
76a1i 9 . . . . 5 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 Fn 𝐽))
8 simp2 1000 . . . . 5 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → ran 𝐹𝐵)
97, 8jctird 317 . . . 4 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 Fn 𝐽 ∧ ran 𝐹𝐵)))
10 df-f 5258 . . . 4 (𝐹: 𝐽𝐵 ↔ (𝐹 Fn 𝐽 ∧ ran 𝐹𝐵))
119, 10imbitrrdi 162 . . 3 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽𝐵))
122, 11jcad 307 . 2 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)))
13 cntop1 14369 . . . . 5 (𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)) → 𝐽 ∈ Top)
1413adantl 277 . . . 4 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐽 ∈ Top)
153toptopon 14186 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
1614, 15sylib 122 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐽 ∈ (TopOn‘ 𝐽))
17 resttopon 14339 . . . . . . 7 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
18173adant2 1018 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
1918adantr 276 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
20 simpr 110 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)))
21 cnf2 14373 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝐾t 𝐵) ∈ (TopOn‘𝐵) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐹: 𝐽𝐵)
2216, 19, 20, 21syl3anc 1249 . . . 4 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐹: 𝐽𝐵)
2314, 22jca 306 . . 3 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵))
2423ex 115 . 2 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)) → (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)))
25 vex 2763 . . . . . . . . 9 𝑥 ∈ V
2625inex1 4163 . . . . . . . 8 (𝑥𝐵) ∈ V
2726a1i 9 . . . . . . 7 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → (𝑥𝐵) ∈ V)
28 simpl1 1002 . . . . . . . 8 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐾 ∈ (TopOn‘𝑌))
29 toponmax 14193 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
3028, 29syl 14 . . . . . . . . 9 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝑌𝐾)
31 simpl3 1004 . . . . . . . . 9 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐵𝑌)
3230, 31ssexd 4169 . . . . . . . 8 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐵 ∈ V)
33 elrest 12857 . . . . . . . 8 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ V) → (𝑦 ∈ (𝐾t 𝐵) ↔ ∃𝑥𝐾 𝑦 = (𝑥𝐵)))
3428, 32, 33syl2anc 411 . . . . . . 7 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (𝑦 ∈ (𝐾t 𝐵) ↔ ∃𝑥𝐾 𝑦 = (𝑥𝐵)))
35 imaeq2 5001 . . . . . . . . 9 (𝑦 = (𝑥𝐵) → (𝐹𝑦) = (𝐹 “ (𝑥𝐵)))
3635eleq1d 2262 . . . . . . . 8 (𝑦 = (𝑥𝐵) → ((𝐹𝑦) ∈ 𝐽 ↔ (𝐹 “ (𝑥𝐵)) ∈ 𝐽))
3736adantl 277 . . . . . . 7 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑦 = (𝑥𝐵)) → ((𝐹𝑦) ∈ 𝐽 ↔ (𝐹 “ (𝑥𝐵)) ∈ 𝐽))
3827, 34, 37ralxfr2d 4495 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽 ↔ ∀𝑥𝐾 (𝐹 “ (𝑥𝐵)) ∈ 𝐽))
39 simplrr 536 . . . . . . . . . 10 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → 𝐹: 𝐽𝐵)
40 ffun 5406 . . . . . . . . . 10 (𝐹: 𝐽𝐵 → Fun 𝐹)
41 inpreima 5684 . . . . . . . . . 10 (Fun 𝐹 → (𝐹 “ (𝑥𝐵)) = ((𝐹𝑥) ∩ (𝐹𝐵)))
4239, 40, 413syl 17 . . . . . . . . 9 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → (𝐹 “ (𝑥𝐵)) = ((𝐹𝑥) ∩ (𝐹𝐵)))
43 cnvimass 5028 . . . . . . . . . . . 12 (𝐹𝑥) ⊆ dom 𝐹
44 cnvimarndm 5029 . . . . . . . . . . . 12 (𝐹 “ ran 𝐹) = dom 𝐹
4543, 44sseqtrri 3214 . . . . . . . . . . 11 (𝐹𝑥) ⊆ (𝐹 “ ran 𝐹)
46 simpll2 1039 . . . . . . . . . . . 12 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → ran 𝐹𝐵)
47 imass2 5041 . . . . . . . . . . . 12 (ran 𝐹𝐵 → (𝐹 “ ran 𝐹) ⊆ (𝐹𝐵))
4846, 47syl 14 . . . . . . . . . . 11 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → (𝐹 “ ran 𝐹) ⊆ (𝐹𝐵))
4945, 48sstrid 3190 . . . . . . . . . 10 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → (𝐹𝑥) ⊆ (𝐹𝐵))
50 df-ss 3166 . . . . . . . . . 10 ((𝐹𝑥) ⊆ (𝐹𝐵) ↔ ((𝐹𝑥) ∩ (𝐹𝐵)) = (𝐹𝑥))
5149, 50sylib 122 . . . . . . . . 9 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → ((𝐹𝑥) ∩ (𝐹𝐵)) = (𝐹𝑥))
5242, 51eqtrd 2226 . . . . . . . 8 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → (𝐹 “ (𝑥𝐵)) = (𝐹𝑥))
5352eleq1d 2262 . . . . . . 7 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → ((𝐹 “ (𝑥𝐵)) ∈ 𝐽 ↔ (𝐹𝑥) ∈ 𝐽))
5453ralbidva 2490 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (∀𝑥𝐾 (𝐹 “ (𝑥𝐵)) ∈ 𝐽 ↔ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽))
55 simprr 531 . . . . . . . 8 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐹: 𝐽𝐵)
5655, 31fssd 5416 . . . . . . 7 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐹: 𝐽𝑌)
5756biantrurd 305 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽 ↔ (𝐹: 𝐽𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
5838, 54, 573bitrrd 215 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → ((𝐹: 𝐽𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽) ↔ ∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽))
5955biantrurd 305 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽 ↔ (𝐹: 𝐽𝐵 ∧ ∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽)))
6058, 59bitrd 188 . . . 4 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → ((𝐹: 𝐽𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽) ↔ (𝐹: 𝐽𝐵 ∧ ∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽)))
61 simprl 529 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐽 ∈ Top)
6261, 15sylib 122 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐽 ∈ (TopOn‘ 𝐽))
63 iscn 14365 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹: 𝐽𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
6462, 28, 63syl2anc 411 . . . 4 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹: 𝐽𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
6518adantr 276 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
66 iscn 14365 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝐾t 𝐵) ∈ (TopOn‘𝐵)) → (𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)) ↔ (𝐹: 𝐽𝐵 ∧ ∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽)))
6762, 65, 66syl2anc 411 . . . 4 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)) ↔ (𝐹: 𝐽𝐵 ∧ ∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽)))
6860, 64, 673bitr4d 220 . . 3 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))))
6968ex 115 . 2 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → ((𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)))))
7012, 24, 69pm5.21ndd 706 1 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wral 2472  wrex 2473  Vcvv 2760  cin 3152  wss 3153   cuni 3835  ccnv 4658  dom cdm 4659  ran crn 4660  cima 4662  Fun wfun 5248   Fn wfn 5249  wf 5250  cfv 5254  (class class class)co 5918  t crest 12850  Topctop 14165  TopOnctopon 14178   Cn ccn 14353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-rest 12852  df-topgen 12871  df-top 14166  df-topon 14179  df-bases 14211  df-cn 14356
This theorem is referenced by:  cnrest2r  14405  hmeores  14483
  Copyright terms: Public domain W3C validator