ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrest2 GIF version

Theorem cnrest2 14910
Description: Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Hankins, 10-Jul-2009.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnrest2 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))))

Proof of Theorem cnrest2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntop1 14875 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
21a1i 9 . . 3 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top))
3 eqid 2229 . . . . . . . 8 𝐽 = 𝐽
4 eqid 2229 . . . . . . . 8 𝐾 = 𝐾
53, 4cnf 14878 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
65ffnd 5474 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 Fn 𝐽)
76a1i 9 . . . . 5 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 Fn 𝐽))
8 simp2 1022 . . . . 5 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → ran 𝐹𝐵)
97, 8jctird 317 . . . 4 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 Fn 𝐽 ∧ ran 𝐹𝐵)))
10 df-f 5322 . . . 4 (𝐹: 𝐽𝐵 ↔ (𝐹 Fn 𝐽 ∧ ran 𝐹𝐵))
119, 10imbitrrdi 162 . . 3 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽𝐵))
122, 11jcad 307 . 2 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)))
13 cntop1 14875 . . . . 5 (𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)) → 𝐽 ∈ Top)
1413adantl 277 . . . 4 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐽 ∈ Top)
153toptopon 14692 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
1614, 15sylib 122 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐽 ∈ (TopOn‘ 𝐽))
17 resttopon 14845 . . . . . . 7 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
18173adant2 1040 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
1918adantr 276 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
20 simpr 110 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)))
21 cnf2 14879 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝐾t 𝐵) ∈ (TopOn‘𝐵) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐹: 𝐽𝐵)
2216, 19, 20, 21syl3anc 1271 . . . 4 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐹: 𝐽𝐵)
2314, 22jca 306 . . 3 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵))
2423ex 115 . 2 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)) → (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)))
25 vex 2802 . . . . . . . . 9 𝑥 ∈ V
2625inex1 4218 . . . . . . . 8 (𝑥𝐵) ∈ V
2726a1i 9 . . . . . . 7 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → (𝑥𝐵) ∈ V)
28 simpl1 1024 . . . . . . . 8 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐾 ∈ (TopOn‘𝑌))
29 toponmax 14699 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
3028, 29syl 14 . . . . . . . . 9 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝑌𝐾)
31 simpl3 1026 . . . . . . . . 9 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐵𝑌)
3230, 31ssexd 4224 . . . . . . . 8 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐵 ∈ V)
33 elrest 13279 . . . . . . . 8 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ V) → (𝑦 ∈ (𝐾t 𝐵) ↔ ∃𝑥𝐾 𝑦 = (𝑥𝐵)))
3428, 32, 33syl2anc 411 . . . . . . 7 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (𝑦 ∈ (𝐾t 𝐵) ↔ ∃𝑥𝐾 𝑦 = (𝑥𝐵)))
35 imaeq2 5064 . . . . . . . . 9 (𝑦 = (𝑥𝐵) → (𝐹𝑦) = (𝐹 “ (𝑥𝐵)))
3635eleq1d 2298 . . . . . . . 8 (𝑦 = (𝑥𝐵) → ((𝐹𝑦) ∈ 𝐽 ↔ (𝐹 “ (𝑥𝐵)) ∈ 𝐽))
3736adantl 277 . . . . . . 7 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑦 = (𝑥𝐵)) → ((𝐹𝑦) ∈ 𝐽 ↔ (𝐹 “ (𝑥𝐵)) ∈ 𝐽))
3827, 34, 37ralxfr2d 4555 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽 ↔ ∀𝑥𝐾 (𝐹 “ (𝑥𝐵)) ∈ 𝐽))
39 simplrr 536 . . . . . . . . . 10 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → 𝐹: 𝐽𝐵)
40 ffun 5476 . . . . . . . . . 10 (𝐹: 𝐽𝐵 → Fun 𝐹)
41 inpreima 5761 . . . . . . . . . 10 (Fun 𝐹 → (𝐹 “ (𝑥𝐵)) = ((𝐹𝑥) ∩ (𝐹𝐵)))
4239, 40, 413syl 17 . . . . . . . . 9 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → (𝐹 “ (𝑥𝐵)) = ((𝐹𝑥) ∩ (𝐹𝐵)))
43 cnvimass 5091 . . . . . . . . . . . 12 (𝐹𝑥) ⊆ dom 𝐹
44 cnvimarndm 5092 . . . . . . . . . . . 12 (𝐹 “ ran 𝐹) = dom 𝐹
4543, 44sseqtrri 3259 . . . . . . . . . . 11 (𝐹𝑥) ⊆ (𝐹 “ ran 𝐹)
46 simpll2 1061 . . . . . . . . . . . 12 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → ran 𝐹𝐵)
47 imass2 5104 . . . . . . . . . . . 12 (ran 𝐹𝐵 → (𝐹 “ ran 𝐹) ⊆ (𝐹𝐵))
4846, 47syl 14 . . . . . . . . . . 11 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → (𝐹 “ ran 𝐹) ⊆ (𝐹𝐵))
4945, 48sstrid 3235 . . . . . . . . . 10 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → (𝐹𝑥) ⊆ (𝐹𝐵))
50 df-ss 3210 . . . . . . . . . 10 ((𝐹𝑥) ⊆ (𝐹𝐵) ↔ ((𝐹𝑥) ∩ (𝐹𝐵)) = (𝐹𝑥))
5149, 50sylib 122 . . . . . . . . 9 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → ((𝐹𝑥) ∩ (𝐹𝐵)) = (𝐹𝑥))
5242, 51eqtrd 2262 . . . . . . . 8 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → (𝐹 “ (𝑥𝐵)) = (𝐹𝑥))
5352eleq1d 2298 . . . . . . 7 ((((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) ∧ 𝑥𝐾) → ((𝐹 “ (𝑥𝐵)) ∈ 𝐽 ↔ (𝐹𝑥) ∈ 𝐽))
5453ralbidva 2526 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (∀𝑥𝐾 (𝐹 “ (𝑥𝐵)) ∈ 𝐽 ↔ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽))
55 simprr 531 . . . . . . . 8 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐹: 𝐽𝐵)
5655, 31fssd 5486 . . . . . . 7 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐹: 𝐽𝑌)
5756biantrurd 305 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽 ↔ (𝐹: 𝐽𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
5838, 54, 573bitrrd 215 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → ((𝐹: 𝐽𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽) ↔ ∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽))
5955biantrurd 305 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽 ↔ (𝐹: 𝐽𝐵 ∧ ∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽)))
6058, 59bitrd 188 . . . 4 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → ((𝐹: 𝐽𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽) ↔ (𝐹: 𝐽𝐵 ∧ ∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽)))
61 simprl 529 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐽 ∈ Top)
6261, 15sylib 122 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → 𝐽 ∈ (TopOn‘ 𝐽))
63 iscn 14871 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹: 𝐽𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
6462, 28, 63syl2anc 411 . . . 4 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹: 𝐽𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
6518adantr 276 . . . . 5 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
66 iscn 14871 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝐾t 𝐵) ∈ (TopOn‘𝐵)) → (𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)) ↔ (𝐹: 𝐽𝐵 ∧ ∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽)))
6762, 65, 66syl2anc 411 . . . 4 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)) ↔ (𝐹: 𝐽𝐵 ∧ ∀𝑦 ∈ (𝐾t 𝐵)(𝐹𝑦) ∈ 𝐽)))
6860, 64, 673bitr4d 220 . . 3 (((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))))
6968ex 115 . 2 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → ((𝐽 ∈ Top ∧ 𝐹: 𝐽𝐵) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵)))))
7012, 24, 69pm5.21ndd 710 1 ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wral 2508  wrex 2509  Vcvv 2799  cin 3196  wss 3197   cuni 3888  ccnv 4718  dom cdm 4719  ran crn 4720  cima 4722  Fun wfun 5312   Fn wfn 5313  wf 5314  cfv 5318  (class class class)co 6001  t crest 13272  Topctop 14671  TopOnctopon 14684   Cn ccn 14859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-rest 13274  df-topgen 13293  df-top 14672  df-topon 14685  df-bases 14717  df-cn 14862
This theorem is referenced by:  cnrest2r  14911  hmeores  14989
  Copyright terms: Public domain W3C validator