![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr2d | GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr2d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
3bitr2d.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr2d | ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 3bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
3 | 1, 2 | bitr4d 191 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3bitr2d.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
5 | 3, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ceqsralt 2787 frecsuclem 6461 indpi 7404 cauappcvgprlemladdru 7718 prsrlt 7849 lesub2 8478 ltsub2 8480 rec11ap 8731 avglt1 9224 rpnegap 9755 modqmuladdnn0 10442 expap0 10643 2shfti 10978 mulreap 11011 minmax 11376 lemininf 11380 xrminmax 11411 xrlemininf 11417 modremain 12073 nnwosdc 12179 nn0seqcvgd 12182 divgcdcoprm0 12242 ismgmid 12963 grpsubeq0 13161 grpsubadd 13163 eqg0el 13302 isunitd 13605 lsslss 13880 isridlrng 13981 zndvds 14148 znleval 14152 isxmet2d 14527 xblss2 14584 neibl 14670 ellimc3apf 14839 logbgt0b 15139 lgsne0 15195 lgsabs1 15196 lgsquadlem1 15234 m1lgs 15242 iswomninnlem 15609 |
Copyright terms: Public domain | W3C validator |