| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr2d | GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr2d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 3bitr2d.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr2d | ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 3bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr4d 191 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3bitr2d.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ceqsralt 2800 frecsuclem 6499 indpi 7462 cauappcvgprlemladdru 7776 prsrlt 7907 lesub2 8537 ltsub2 8539 rec11ap 8790 avglt1 9283 rpnegap 9815 modqmuladdnn0 10520 expap0 10721 swrdspsleq 11128 2shfti 11186 mulreap 11219 minmax 11585 lemininf 11589 xrminmax 11620 xrlemininf 11626 modremain 12284 nnwosdc 12404 nn0seqcvgd 12407 divgcdcoprm0 12467 ismgmid 13253 grpsubeq0 13462 grpsubadd 13464 eqg0el 13609 isunitd 13912 lsslss 14187 isridlrng 14288 zndvds 14455 znleval 14459 isxmet2d 14864 xblss2 14921 neibl 15007 ellimc3apf 15176 logbgt0b 15482 lgsne0 15559 lgsabs1 15560 lgsquadlem1 15598 m1lgs 15606 iswomninnlem 16062 |
| Copyright terms: Public domain | W3C validator |