Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr2d | GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr2d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
3bitr2d.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr2d | ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 3bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
3 | 1, 2 | bitr4d 190 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3bitr2d.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
5 | 3, 4 | bitrd 187 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ceqsralt 2753 frecsuclem 6374 indpi 7283 cauappcvgprlemladdru 7597 prsrlt 7728 lesub2 8355 ltsub2 8357 rec11ap 8606 avglt1 9095 rpnegap 9622 modqmuladdnn0 10303 expap0 10485 2shfti 10773 mulreap 10806 minmax 11171 lemininf 11175 xrminmax 11206 xrlemininf 11212 modremain 11866 nn0seqcvgd 11973 divgcdcoprm0 12033 ismgmid 12608 isxmet2d 12988 xblss2 13045 neibl 13131 ellimc3apf 13269 logbgt0b 13524 lgsne0 13579 lgsabs1 13580 iswomninnlem 13928 |
Copyright terms: Public domain | W3C validator |