| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr2d | GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr2d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 3bitr2d.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr2d | ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 3bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr4d 191 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3bitr2d.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ceqsralt 2807 frecsuclem 6522 indpi 7497 cauappcvgprlemladdru 7811 prsrlt 7942 lesub2 8572 ltsub2 8574 rec11ap 8825 avglt1 9318 rpnegap 9850 modqmuladdnn0 10557 expap0 10758 swrdspsleq 11165 2shfti 11308 mulreap 11341 minmax 11707 lemininf 11711 xrminmax 11742 xrlemininf 11748 modremain 12406 nnwosdc 12526 nn0seqcvgd 12529 divgcdcoprm0 12589 ismgmid 13376 grpsubeq0 13585 grpsubadd 13587 eqg0el 13732 isunitd 14035 lsslss 14310 isridlrng 14411 zndvds 14578 znleval 14582 isxmet2d 14987 xblss2 15044 neibl 15130 ellimc3apf 15299 logbgt0b 15605 lgsne0 15682 lgsabs1 15683 lgsquadlem1 15721 m1lgs 15729 iswomninnlem 16328 |
| Copyright terms: Public domain | W3C validator |