| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr2d | GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr2d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 3bitr2d.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr2d | ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 3bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr4d 191 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3bitr2d.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ceqsralt 2790 frecsuclem 6473 indpi 7426 cauappcvgprlemladdru 7740 prsrlt 7871 lesub2 8501 ltsub2 8503 rec11ap 8754 avglt1 9247 rpnegap 9778 modqmuladdnn0 10477 expap0 10678 2shfti 11013 mulreap 11046 minmax 11412 lemininf 11416 xrminmax 11447 xrlemininf 11453 modremain 12111 nnwosdc 12231 nn0seqcvgd 12234 divgcdcoprm0 12294 ismgmid 13079 grpsubeq0 13288 grpsubadd 13290 eqg0el 13435 isunitd 13738 lsslss 14013 isridlrng 14114 zndvds 14281 znleval 14285 isxmet2d 14668 xblss2 14725 neibl 14811 ellimc3apf 14980 logbgt0b 15286 lgsne0 15363 lgsabs1 15364 lgsquadlem1 15402 m1lgs 15410 iswomninnlem 15780 |
| Copyright terms: Public domain | W3C validator |