| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr2d | GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr2d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 3bitr2d.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr2d | ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 3bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr4d 191 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3bitr2d.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ceqsralt 2827 frecsuclem 6558 indpi 7537 cauappcvgprlemladdru 7851 prsrlt 7982 lesub2 8612 ltsub2 8614 rec11ap 8865 avglt1 9358 rpnegap 9890 modqmuladdnn0 10598 expap0 10799 swrdspsleq 11207 2shfti 11350 mulreap 11383 minmax 11749 lemininf 11753 xrminmax 11784 xrlemininf 11790 modremain 12448 nnwosdc 12568 nn0seqcvgd 12571 divgcdcoprm0 12631 ismgmid 13418 grpsubeq0 13627 grpsubadd 13629 eqg0el 13774 isunitd 14078 lsslss 14353 isridlrng 14454 zndvds 14621 znleval 14625 isxmet2d 15030 xblss2 15087 neibl 15173 ellimc3apf 15342 logbgt0b 15648 lgsne0 15725 lgsabs1 15726 lgsquadlem1 15764 m1lgs 15772 iswomninnlem 16447 |
| Copyright terms: Public domain | W3C validator |