| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr2d | GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr2d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 3bitr2d.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr2d | ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 3bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr4d 191 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3bitr2d.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ceqsralt 2790 frecsuclem 6473 indpi 7428 cauappcvgprlemladdru 7742 prsrlt 7873 lesub2 8503 ltsub2 8505 rec11ap 8756 avglt1 9249 rpnegap 9780 modqmuladdnn0 10479 expap0 10680 2shfti 11015 mulreap 11048 minmax 11414 lemininf 11418 xrminmax 11449 xrlemininf 11455 modremain 12113 nnwosdc 12233 nn0seqcvgd 12236 divgcdcoprm0 12296 ismgmid 13081 grpsubeq0 13290 grpsubadd 13292 eqg0el 13437 isunitd 13740 lsslss 14015 isridlrng 14116 zndvds 14283 znleval 14287 isxmet2d 14692 xblss2 14749 neibl 14835 ellimc3apf 15004 logbgt0b 15310 lgsne0 15387 lgsabs1 15388 lgsquadlem1 15426 m1lgs 15434 iswomninnlem 15806 |
| Copyright terms: Public domain | W3C validator |