| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitrd | GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999.) |
| Ref | Expression |
|---|---|
| 3bitrd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitrd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| 3bitrd.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitrd | ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 3bitrd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 3 | 1, 2 | bitrd 188 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3bitrd.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sbceqal 3058 sbcnel12g 3114 elxp4 5179 elxp5 5180 f1eq123d 5526 foeq123d 5527 f1oeq123d 5528 fnmptfvd 5697 ofrfval 6180 eloprabi 6295 fnmpoovd 6314 smoeq 6389 ecidg 6699 ixpsnval 6801 enqbreq2 7490 ltanqg 7533 caucvgprprlemexb 7840 caucvgsrlemgt1 7928 caucvgsrlemoffres 7933 ltrennb 7987 apneg 8704 mulext1 8705 apdivmuld 8906 ltdiv23 8985 lediv23 8986 halfpos 9288 addltmul 9294 div4p1lem1div2 9311 ztri3or 9435 supminfex 9738 iccf1o 10146 fzshftral 10250 fzoshftral 10389 infssuzex 10398 2tnp1ge0ge0 10466 fihashen1 10966 seq3coll 11009 s111 11108 swrdspsleq 11143 pfxeq 11172 wrd2ind 11199 cjap 11292 negfi 11614 tanaddaplem 12124 dvdssub 12224 addmodlteqALT 12245 dvdsmod 12248 oddp1even 12262 nn0o1gt2 12291 nn0oddm1d2 12295 bitscmp 12344 cncongr1 12500 cncongr2 12501 4sqlem11 12799 4sqlem17 12805 intopsn 13274 sgrp1 13318 sgrppropd 13320 issubg 13584 nmzsubg 13621 conjnmzb 13691 srg1zr 13824 ring1 13896 issubrg 14058 znf1o 14488 znleval 14490 znunit 14496 elmopn 14993 metss 15041 comet 15046 xmetxp 15054 limcmpted 15210 cnlimc 15219 lgsneg 15576 lgsne0 15590 lgsprme0 15594 lgsquadlem1 15629 lgsquadlem2 15630 2lgs 15656 2lgsoddprm 15665 edg0iedg0g 15737 wrdupgren 15767 wrdumgren 15777 |
| Copyright terms: Public domain | W3C validator |