![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitrd | GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999.) |
Ref | Expression |
---|---|
3bitrd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitrd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
3bitrd.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitrd | ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 3bitrd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
3 | 1, 2 | bitrd 187 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3bitrd.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
5 | 3, 4 | bitrd 187 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sbceqal 2932 sbcnel12g 2986 elxp4 4984 elxp5 4985 f1eq123d 5318 foeq123d 5319 f1oeq123d 5320 ofrfval 5944 eloprabi 6048 fnmpoovd 6066 smoeq 6141 ecidg 6447 ixpsnval 6549 enqbreq2 7110 ltanqg 7153 caucvgprprlemexb 7460 caucvgsrlemgt1 7534 caucvgsrlemoffres 7539 ltrennb 7586 apneg 8288 mulext1 8289 apdivmuld 8483 ltdiv23 8557 lediv23 8558 halfpos 8852 addltmul 8857 div4p1lem1div2 8874 ztri3or 8998 supminfex 9291 iccf1o 9677 fzshftral 9778 fzoshftral 9905 2tnp1ge0ge0 9964 fihashen1 10435 seq3coll 10475 cjap 10568 negfi 10888 tanaddaplem 11293 dvdssub 11383 addmodlteqALT 11402 dvdsmod 11405 oddp1even 11418 nn0o1gt2 11447 nn0oddm1d2 11451 infssuzex 11487 cncongr1 11627 cncongr2 11628 elmopn 12432 metss 12480 comet 12485 xmetxp 12493 limcmpted 12585 cnlimc 12594 |
Copyright terms: Public domain | W3C validator |