Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitrd | GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999.) |
Ref | Expression |
---|---|
3bitrd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitrd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
3bitrd.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitrd | ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 3bitrd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
3 | 1, 2 | bitrd 187 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3bitrd.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
5 | 3, 4 | bitrd 187 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sbceqal 2992 sbcnel12g 3048 elxp4 5070 elxp5 5071 f1eq123d 5404 foeq123d 5405 f1oeq123d 5406 ofrfval 6034 eloprabi 6138 fnmpoovd 6156 smoeq 6231 ecidg 6537 ixpsnval 6639 enqbreq2 7260 ltanqg 7303 caucvgprprlemexb 7610 caucvgsrlemgt1 7698 caucvgsrlemoffres 7703 ltrennb 7757 apneg 8469 mulext1 8470 apdivmuld 8669 ltdiv23 8746 lediv23 8747 halfpos 9047 addltmul 9052 div4p1lem1div2 9069 ztri3or 9193 supminfex 9491 iccf1o 9890 fzshftral 9992 fzoshftral 10119 2tnp1ge0ge0 10182 fihashen1 10655 seq3coll 10695 cjap 10788 negfi 11109 tanaddaplem 11617 dvdssub 11713 addmodlteqALT 11732 dvdsmod 11735 oddp1even 11748 nn0o1gt2 11777 nn0oddm1d2 11781 infssuzex 11817 cncongr1 11960 cncongr2 11961 elmopn 12806 metss 12854 comet 12859 xmetxp 12867 limcmpted 12992 cnlimc 13001 |
Copyright terms: Public domain | W3C validator |