| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3bitrd | GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999.) | 
| Ref | Expression | 
|---|---|
| 3bitrd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| 3bitrd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | 
| 3bitrd.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | 
| Ref | Expression | 
|---|---|
| 3bitrd | ⊢ (𝜑 → (𝜓 ↔ 𝜏)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3bitrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 3bitrd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 3 | 1, 2 | bitrd 188 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | 
| 4 | 3bitrd.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: sbceqal 3045 sbcnel12g 3101 elxp4 5157 elxp5 5158 f1eq123d 5496 foeq123d 5497 f1oeq123d 5498 fnmptfvd 5666 ofrfval 6144 eloprabi 6254 fnmpoovd 6273 smoeq 6348 ecidg 6658 ixpsnval 6760 enqbreq2 7424 ltanqg 7467 caucvgprprlemexb 7774 caucvgsrlemgt1 7862 caucvgsrlemoffres 7867 ltrennb 7921 apneg 8638 mulext1 8639 apdivmuld 8840 ltdiv23 8919 lediv23 8920 halfpos 9222 addltmul 9228 div4p1lem1div2 9245 ztri3or 9369 supminfex 9671 iccf1o 10079 fzshftral 10183 fzoshftral 10314 infssuzex 10323 2tnp1ge0ge0 10391 fihashen1 10891 seq3coll 10934 cjap 11071 negfi 11393 tanaddaplem 11903 dvdssub 12003 addmodlteqALT 12024 dvdsmod 12027 oddp1even 12041 nn0o1gt2 12070 nn0oddm1d2 12074 cncongr1 12271 cncongr2 12272 4sqlem11 12570 4sqlem17 12576 intopsn 13010 sgrp1 13054 sgrppropd 13056 issubg 13303 nmzsubg 13340 conjnmzb 13410 srg1zr 13543 ring1 13615 issubrg 13777 znf1o 14207 znleval 14209 znunit 14215 elmopn 14682 metss 14730 comet 14735 xmetxp 14743 limcmpted 14899 cnlimc 14908 lgsneg 15265 lgsne0 15279 lgsprme0 15283 lgsquadlem1 15318 lgsquadlem2 15319 2lgs 15345 2lgsoddprm 15354 | 
| Copyright terms: Public domain | W3C validator |