| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitrd | GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999.) |
| Ref | Expression |
|---|---|
| 3bitrd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitrd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| 3bitrd.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitrd | ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 3bitrd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 3 | 1, 2 | bitrd 188 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3bitrd.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sbceqal 3045 sbcnel12g 3101 elxp4 5158 elxp5 5159 f1eq123d 5499 foeq123d 5500 f1oeq123d 5501 fnmptfvd 5669 ofrfval 6148 eloprabi 6263 fnmpoovd 6282 smoeq 6357 ecidg 6667 ixpsnval 6769 enqbreq2 7443 ltanqg 7486 caucvgprprlemexb 7793 caucvgsrlemgt1 7881 caucvgsrlemoffres 7886 ltrennb 7940 apneg 8657 mulext1 8658 apdivmuld 8859 ltdiv23 8938 lediv23 8939 halfpos 9241 addltmul 9247 div4p1lem1div2 9264 ztri3or 9388 supminfex 9690 iccf1o 10098 fzshftral 10202 fzoshftral 10333 infssuzex 10342 2tnp1ge0ge0 10410 fihashen1 10910 seq3coll 10953 cjap 11090 negfi 11412 tanaddaplem 11922 dvdssub 12022 addmodlteqALT 12043 dvdsmod 12046 oddp1even 12060 nn0o1gt2 12089 nn0oddm1d2 12093 bitscmp 12142 cncongr1 12298 cncongr2 12299 4sqlem11 12597 4sqlem17 12603 intopsn 13071 sgrp1 13115 sgrppropd 13117 issubg 13381 nmzsubg 13418 conjnmzb 13488 srg1zr 13621 ring1 13693 issubrg 13855 znf1o 14285 znleval 14287 znunit 14293 elmopn 14790 metss 14838 comet 14843 xmetxp 14851 limcmpted 15007 cnlimc 15016 lgsneg 15373 lgsne0 15387 lgsprme0 15391 lgsquadlem1 15426 lgsquadlem2 15427 2lgs 15453 2lgsoddprm 15462 |
| Copyright terms: Public domain | W3C validator |