| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitrd | GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999.) |
| Ref | Expression |
|---|---|
| 3bitrd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitrd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| 3bitrd.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitrd | ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 3bitrd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 3 | 1, 2 | bitrd 188 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3bitrd.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sbceqal 3084 sbcnel12g 3141 elxp4 5215 elxp5 5216 f1eq123d 5563 foeq123d 5564 f1oeq123d 5565 fnmptfvd 5738 ofrfval 6225 eloprabi 6340 fnmpoovd 6359 smoeq 6434 ecidg 6744 ixpsnval 6846 enqbreq2 7540 ltanqg 7583 caucvgprprlemexb 7890 caucvgsrlemgt1 7978 caucvgsrlemoffres 7983 ltrennb 8037 apneg 8754 mulext1 8755 apdivmuld 8956 ltdiv23 9035 lediv23 9036 halfpos 9338 addltmul 9344 div4p1lem1div2 9361 ztri3or 9485 supminfex 9788 iccf1o 10196 fzshftral 10300 fzoshftral 10439 infssuzex 10448 2tnp1ge0ge0 10516 fihashen1 11016 seq3coll 11059 s111 11159 swrdspsleq 11194 pfxeq 11223 wrd2ind 11250 cjap 11412 negfi 11734 tanaddaplem 12244 dvdssub 12344 addmodlteqALT 12365 dvdsmod 12368 oddp1even 12382 nn0o1gt2 12411 nn0oddm1d2 12415 bitscmp 12464 cncongr1 12620 cncongr2 12621 4sqlem11 12919 4sqlem17 12925 intopsn 13395 sgrp1 13439 sgrppropd 13441 issubg 13705 nmzsubg 13742 conjnmzb 13812 srg1zr 13945 ring1 14017 issubrg 14179 znf1o 14609 znleval 14611 znunit 14617 elmopn 15114 metss 15162 comet 15167 xmetxp 15175 limcmpted 15331 cnlimc 15340 lgsneg 15697 lgsne0 15711 lgsprme0 15715 lgsquadlem1 15750 lgsquadlem2 15751 2lgs 15777 2lgsoddprm 15786 edg0iedg0g 15860 wrdupgren 15890 wrdumgren 15900 |
| Copyright terms: Public domain | W3C validator |