| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitrd | GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999.) |
| Ref | Expression |
|---|---|
| 3bitrd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitrd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| 3bitrd.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitrd | ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 3bitrd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 3 | 1, 2 | bitrd 188 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3bitrd.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sbceqal 3053 sbcnel12g 3109 elxp4 5169 elxp5 5170 f1eq123d 5513 foeq123d 5514 f1oeq123d 5515 fnmptfvd 5683 ofrfval 6166 eloprabi 6281 fnmpoovd 6300 smoeq 6375 ecidg 6685 ixpsnval 6787 enqbreq2 7469 ltanqg 7512 caucvgprprlemexb 7819 caucvgsrlemgt1 7907 caucvgsrlemoffres 7912 ltrennb 7966 apneg 8683 mulext1 8684 apdivmuld 8885 ltdiv23 8964 lediv23 8965 halfpos 9267 addltmul 9273 div4p1lem1div2 9290 ztri3or 9414 supminfex 9717 iccf1o 10125 fzshftral 10229 fzoshftral 10365 infssuzex 10374 2tnp1ge0ge0 10442 fihashen1 10942 seq3coll 10985 cjap 11159 negfi 11481 tanaddaplem 11991 dvdssub 12091 addmodlteqALT 12112 dvdsmod 12115 oddp1even 12129 nn0o1gt2 12158 nn0oddm1d2 12162 bitscmp 12211 cncongr1 12367 cncongr2 12368 4sqlem11 12666 4sqlem17 12672 intopsn 13141 sgrp1 13185 sgrppropd 13187 issubg 13451 nmzsubg 13488 conjnmzb 13558 srg1zr 13691 ring1 13763 issubrg 13925 znf1o 14355 znleval 14357 znunit 14363 elmopn 14860 metss 14908 comet 14913 xmetxp 14921 limcmpted 15077 cnlimc 15086 lgsneg 15443 lgsne0 15457 lgsprme0 15461 lgsquadlem1 15496 lgsquadlem2 15497 2lgs 15523 2lgsoddprm 15532 |
| Copyright terms: Public domain | W3C validator |