Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitrd | GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999.) |
Ref | Expression |
---|---|
3bitrd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitrd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
3bitrd.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitrd | ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 3bitrd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
3 | 1, 2 | bitrd 187 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3bitrd.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
5 | 3, 4 | bitrd 187 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sbceqal 3006 sbcnel12g 3062 elxp4 5091 elxp5 5092 f1eq123d 5425 foeq123d 5426 f1oeq123d 5427 ofrfval 6058 eloprabi 6164 fnmpoovd 6183 smoeq 6258 ecidg 6565 ixpsnval 6667 enqbreq2 7298 ltanqg 7341 caucvgprprlemexb 7648 caucvgsrlemgt1 7736 caucvgsrlemoffres 7741 ltrennb 7795 apneg 8509 mulext1 8510 apdivmuld 8709 ltdiv23 8787 lediv23 8788 halfpos 9088 addltmul 9093 div4p1lem1div2 9110 ztri3or 9234 supminfex 9535 iccf1o 9940 fzshftral 10043 fzoshftral 10173 2tnp1ge0ge0 10236 fihashen1 10712 seq3coll 10755 cjap 10848 negfi 11169 tanaddaplem 11679 dvdssub 11778 addmodlteqALT 11797 dvdsmod 11800 oddp1even 11813 nn0o1gt2 11842 nn0oddm1d2 11846 infssuzex 11882 cncongr1 12035 cncongr2 12036 intopsn 12598 elmopn 13086 metss 13134 comet 13139 xmetxp 13147 limcmpted 13272 cnlimc 13281 lgsneg 13565 lgsne0 13579 lgsprme0 13583 |
Copyright terms: Public domain | W3C validator |