| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitrd | GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999.) |
| Ref | Expression |
|---|---|
| 3bitrd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitrd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| 3bitrd.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitrd | ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 3bitrd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 3 | 1, 2 | bitrd 188 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3bitrd.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sbceqal 3045 sbcnel12g 3101 elxp4 5158 elxp5 5159 f1eq123d 5499 foeq123d 5500 f1oeq123d 5501 fnmptfvd 5669 ofrfval 6148 eloprabi 6263 fnmpoovd 6282 smoeq 6357 ecidg 6667 ixpsnval 6769 enqbreq2 7441 ltanqg 7484 caucvgprprlemexb 7791 caucvgsrlemgt1 7879 caucvgsrlemoffres 7884 ltrennb 7938 apneg 8655 mulext1 8656 apdivmuld 8857 ltdiv23 8936 lediv23 8937 halfpos 9239 addltmul 9245 div4p1lem1div2 9262 ztri3or 9386 supminfex 9688 iccf1o 10096 fzshftral 10200 fzoshftral 10331 infssuzex 10340 2tnp1ge0ge0 10408 fihashen1 10908 seq3coll 10951 cjap 11088 negfi 11410 tanaddaplem 11920 dvdssub 12020 addmodlteqALT 12041 dvdsmod 12044 oddp1even 12058 nn0o1gt2 12087 nn0oddm1d2 12091 bitscmp 12140 cncongr1 12296 cncongr2 12297 4sqlem11 12595 4sqlem17 12601 intopsn 13069 sgrp1 13113 sgrppropd 13115 issubg 13379 nmzsubg 13416 conjnmzb 13486 srg1zr 13619 ring1 13691 issubrg 13853 znf1o 14283 znleval 14285 znunit 14291 elmopn 14766 metss 14814 comet 14819 xmetxp 14827 limcmpted 14983 cnlimc 14992 lgsneg 15349 lgsne0 15363 lgsprme0 15367 lgsquadlem1 15402 lgsquadlem2 15403 2lgs 15429 2lgsoddprm 15438 |
| Copyright terms: Public domain | W3C validator |