ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srpospr GIF version

Theorem srpospr 7845
Description: Mapping from a signed real greater than zero to a positive real. (Contributed by Jim Kingdon, 25-Jun-2021.)
Assertion
Ref Expression
srpospr ((𝐴R ∧ 0R <R 𝐴) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem srpospr
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7789 . . 3 R = ((P × P) / ~R )
2 breq2 4034 . . . 4 ([⟨𝑎, 𝑏⟩] ~R = 𝐴 → (0R <R [⟨𝑎, 𝑏⟩] ~R ↔ 0R <R 𝐴))
3 eqeq2 2203 . . . . 5 ([⟨𝑎, 𝑏⟩] ~R = 𝐴 → ([⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ↔ [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴))
43reubidv 2678 . . . 4 ([⟨𝑎, 𝑏⟩] ~R = 𝐴 → (∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ↔ ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴))
52, 4imbi12d 234 . . 3 ([⟨𝑎, 𝑏⟩] ~R = 𝐴 → ((0R <R [⟨𝑎, 𝑏⟩] ~R → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ) ↔ (0R <R 𝐴 → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)))
6 gt0srpr 7810 . . . . . . . 8 (0R <R [⟨𝑎, 𝑏⟩] ~R𝑏<P 𝑎)
76biimpi 120 . . . . . . 7 (0R <R [⟨𝑎, 𝑏⟩] ~R𝑏<P 𝑎)
87adantl 277 . . . . . 6 (((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) → 𝑏<P 𝑎)
9 lteupri 7679 . . . . . 6 (𝑏<P 𝑎 → ∃!𝑥P (𝑏 +P 𝑥) = 𝑎)
108, 9syl 14 . . . . 5 (((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) → ∃!𝑥P (𝑏 +P 𝑥) = 𝑎)
11 simpr 110 . . . . . . . . 9 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → 𝑥P)
12 1pr 7616 . . . . . . . . . 10 1PP
1312a1i 9 . . . . . . . . 9 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → 1PP)
14 addclpr 7599 . . . . . . . . 9 ((𝑥P ∧ 1PP) → (𝑥 +P 1P) ∈ P)
1511, 13, 14syl2anc 411 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (𝑥 +P 1P) ∈ P)
16 simplll 533 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → 𝑎P)
17 simpllr 534 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → 𝑏P)
18 enreceq 7798 . . . . . . . 8 ((((𝑥 +P 1P) ∈ P ∧ 1PP) ∧ (𝑎P𝑏P)) → ([⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ↔ ((𝑥 +P 1P) +P 𝑏) = (1P +P 𝑎)))
1915, 13, 16, 17, 18syl22anc 1250 . . . . . . 7 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ([⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ↔ ((𝑥 +P 1P) +P 𝑏) = (1P +P 𝑎)))
20 addcomprg 7640 . . . . . . . . . . . 12 ((𝑥P ∧ 1PP) → (𝑥 +P 1P) = (1P +P 𝑥))
2111, 13, 20syl2anc 411 . . . . . . . . . . 11 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (𝑥 +P 1P) = (1P +P 𝑥))
2221oveq1d 5934 . . . . . . . . . 10 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((𝑥 +P 1P) +P 𝑏) = ((1P +P 𝑥) +P 𝑏))
23 addassprg 7641 . . . . . . . . . . 11 ((1PP𝑥P𝑏P) → ((1P +P 𝑥) +P 𝑏) = (1P +P (𝑥 +P 𝑏)))
2413, 11, 17, 23syl3anc 1249 . . . . . . . . . 10 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((1P +P 𝑥) +P 𝑏) = (1P +P (𝑥 +P 𝑏)))
2522, 24eqtrd 2226 . . . . . . . . 9 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((𝑥 +P 1P) +P 𝑏) = (1P +P (𝑥 +P 𝑏)))
2625eqeq1d 2202 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (((𝑥 +P 1P) +P 𝑏) = (1P +P 𝑎) ↔ (1P +P (𝑥 +P 𝑏)) = (1P +P 𝑎)))
27 addclpr 7599 . . . . . . . . . . 11 ((𝑥P𝑏P) → (𝑥 +P 𝑏) ∈ P)
2811, 17, 27syl2anc 411 . . . . . . . . . 10 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (𝑥 +P 𝑏) ∈ P)
29 addcanprg 7678 . . . . . . . . . 10 ((1PP ∧ (𝑥 +P 𝑏) ∈ P𝑎P) → ((1P +P (𝑥 +P 𝑏)) = (1P +P 𝑎) → (𝑥 +P 𝑏) = 𝑎))
3013, 28, 16, 29syl3anc 1249 . . . . . . . . 9 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((1P +P (𝑥 +P 𝑏)) = (1P +P 𝑎) → (𝑥 +P 𝑏) = 𝑎))
31 oveq2 5927 . . . . . . . . 9 ((𝑥 +P 𝑏) = 𝑎 → (1P +P (𝑥 +P 𝑏)) = (1P +P 𝑎))
3230, 31impbid1 142 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((1P +P (𝑥 +P 𝑏)) = (1P +P 𝑎) ↔ (𝑥 +P 𝑏) = 𝑎))
3326, 32bitrd 188 . . . . . . 7 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (((𝑥 +P 1P) +P 𝑏) = (1P +P 𝑎) ↔ (𝑥 +P 𝑏) = 𝑎))
34 addcomprg 7640 . . . . . . . . 9 ((𝑥P𝑏P) → (𝑥 +P 𝑏) = (𝑏 +P 𝑥))
3511, 17, 34syl2anc 411 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (𝑥 +P 𝑏) = (𝑏 +P 𝑥))
3635eqeq1d 2202 . . . . . . 7 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((𝑥 +P 𝑏) = 𝑎 ↔ (𝑏 +P 𝑥) = 𝑎))
3719, 33, 363bitrrd 215 . . . . . 6 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((𝑏 +P 𝑥) = 𝑎 ↔ [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ))
3837reubidva 2677 . . . . 5 (((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) → (∃!𝑥P (𝑏 +P 𝑥) = 𝑎 ↔ ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ))
3910, 38mpbid 147 . . . 4 (((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R )
4039ex 115 . . 3 ((𝑎P𝑏P) → (0R <R [⟨𝑎, 𝑏⟩] ~R → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ))
411, 5, 40ecoptocl 6678 . 2 (𝐴R → (0R <R 𝐴 → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴))
4241imp 124 1 ((𝐴R ∧ 0R <R 𝐴) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  ∃!wreu 2474  cop 3622   class class class wbr 4030  (class class class)co 5919  [cec 6587  Pcnp 7353  1Pc1p 7354   +P cpp 7355  <P cltp 7357   ~R cer 7358  Rcnr 7359  0Rc0r 7360   <R cltr 7365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-i1p 7529  df-iplp 7530  df-iltp 7532  df-enr 7788  df-nr 7789  df-ltr 7792  df-0r 7793
This theorem is referenced by:  prsrriota  7850  caucvgsrlemcl  7851  caucvgsrlemgt1  7857
  Copyright terms: Public domain W3C validator