ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srpospr GIF version

Theorem srpospr 7966
Description: Mapping from a signed real greater than zero to a positive real. (Contributed by Jim Kingdon, 25-Jun-2021.)
Assertion
Ref Expression
srpospr ((𝐴R ∧ 0R <R 𝐴) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem srpospr
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7910 . . 3 R = ((P × P) / ~R )
2 breq2 4086 . . . 4 ([⟨𝑎, 𝑏⟩] ~R = 𝐴 → (0R <R [⟨𝑎, 𝑏⟩] ~R ↔ 0R <R 𝐴))
3 eqeq2 2239 . . . . 5 ([⟨𝑎, 𝑏⟩] ~R = 𝐴 → ([⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ↔ [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴))
43reubidv 2716 . . . 4 ([⟨𝑎, 𝑏⟩] ~R = 𝐴 → (∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ↔ ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴))
52, 4imbi12d 234 . . 3 ([⟨𝑎, 𝑏⟩] ~R = 𝐴 → ((0R <R [⟨𝑎, 𝑏⟩] ~R → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ) ↔ (0R <R 𝐴 → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)))
6 gt0srpr 7931 . . . . . . . 8 (0R <R [⟨𝑎, 𝑏⟩] ~R𝑏<P 𝑎)
76biimpi 120 . . . . . . 7 (0R <R [⟨𝑎, 𝑏⟩] ~R𝑏<P 𝑎)
87adantl 277 . . . . . 6 (((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) → 𝑏<P 𝑎)
9 lteupri 7800 . . . . . 6 (𝑏<P 𝑎 → ∃!𝑥P (𝑏 +P 𝑥) = 𝑎)
108, 9syl 14 . . . . 5 (((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) → ∃!𝑥P (𝑏 +P 𝑥) = 𝑎)
11 simpr 110 . . . . . . . . 9 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → 𝑥P)
12 1pr 7737 . . . . . . . . . 10 1PP
1312a1i 9 . . . . . . . . 9 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → 1PP)
14 addclpr 7720 . . . . . . . . 9 ((𝑥P ∧ 1PP) → (𝑥 +P 1P) ∈ P)
1511, 13, 14syl2anc 411 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (𝑥 +P 1P) ∈ P)
16 simplll 533 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → 𝑎P)
17 simpllr 534 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → 𝑏P)
18 enreceq 7919 . . . . . . . 8 ((((𝑥 +P 1P) ∈ P ∧ 1PP) ∧ (𝑎P𝑏P)) → ([⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ↔ ((𝑥 +P 1P) +P 𝑏) = (1P +P 𝑎)))
1915, 13, 16, 17, 18syl22anc 1272 . . . . . . 7 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ([⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ↔ ((𝑥 +P 1P) +P 𝑏) = (1P +P 𝑎)))
20 addcomprg 7761 . . . . . . . . . . . 12 ((𝑥P ∧ 1PP) → (𝑥 +P 1P) = (1P +P 𝑥))
2111, 13, 20syl2anc 411 . . . . . . . . . . 11 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (𝑥 +P 1P) = (1P +P 𝑥))
2221oveq1d 6015 . . . . . . . . . 10 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((𝑥 +P 1P) +P 𝑏) = ((1P +P 𝑥) +P 𝑏))
23 addassprg 7762 . . . . . . . . . . 11 ((1PP𝑥P𝑏P) → ((1P +P 𝑥) +P 𝑏) = (1P +P (𝑥 +P 𝑏)))
2413, 11, 17, 23syl3anc 1271 . . . . . . . . . 10 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((1P +P 𝑥) +P 𝑏) = (1P +P (𝑥 +P 𝑏)))
2522, 24eqtrd 2262 . . . . . . . . 9 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((𝑥 +P 1P) +P 𝑏) = (1P +P (𝑥 +P 𝑏)))
2625eqeq1d 2238 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (((𝑥 +P 1P) +P 𝑏) = (1P +P 𝑎) ↔ (1P +P (𝑥 +P 𝑏)) = (1P +P 𝑎)))
27 addclpr 7720 . . . . . . . . . . 11 ((𝑥P𝑏P) → (𝑥 +P 𝑏) ∈ P)
2811, 17, 27syl2anc 411 . . . . . . . . . 10 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (𝑥 +P 𝑏) ∈ P)
29 addcanprg 7799 . . . . . . . . . 10 ((1PP ∧ (𝑥 +P 𝑏) ∈ P𝑎P) → ((1P +P (𝑥 +P 𝑏)) = (1P +P 𝑎) → (𝑥 +P 𝑏) = 𝑎))
3013, 28, 16, 29syl3anc 1271 . . . . . . . . 9 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((1P +P (𝑥 +P 𝑏)) = (1P +P 𝑎) → (𝑥 +P 𝑏) = 𝑎))
31 oveq2 6008 . . . . . . . . 9 ((𝑥 +P 𝑏) = 𝑎 → (1P +P (𝑥 +P 𝑏)) = (1P +P 𝑎))
3230, 31impbid1 142 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((1P +P (𝑥 +P 𝑏)) = (1P +P 𝑎) ↔ (𝑥 +P 𝑏) = 𝑎))
3326, 32bitrd 188 . . . . . . 7 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (((𝑥 +P 1P) +P 𝑏) = (1P +P 𝑎) ↔ (𝑥 +P 𝑏) = 𝑎))
34 addcomprg 7761 . . . . . . . . 9 ((𝑥P𝑏P) → (𝑥 +P 𝑏) = (𝑏 +P 𝑥))
3511, 17, 34syl2anc 411 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (𝑥 +P 𝑏) = (𝑏 +P 𝑥))
3635eqeq1d 2238 . . . . . . 7 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((𝑥 +P 𝑏) = 𝑎 ↔ (𝑏 +P 𝑥) = 𝑎))
3719, 33, 363bitrrd 215 . . . . . 6 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((𝑏 +P 𝑥) = 𝑎 ↔ [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ))
3837reubidva 2715 . . . . 5 (((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) → (∃!𝑥P (𝑏 +P 𝑥) = 𝑎 ↔ ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ))
3910, 38mpbid 147 . . . 4 (((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R )
4039ex 115 . . 3 ((𝑎P𝑏P) → (0R <R [⟨𝑎, 𝑏⟩] ~R → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ))
411, 5, 40ecoptocl 6767 . 2 (𝐴R → (0R <R 𝐴 → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴))
4241imp 124 1 ((𝐴R ∧ 0R <R 𝐴) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  ∃!wreu 2510  cop 3669   class class class wbr 4082  (class class class)co 6000  [cec 6676  Pcnp 7474  1Pc1p 7475   +P cpp 7476  <P cltp 7478   ~R cer 7479  Rcnr 7480  0Rc0r 7481   <R cltr 7486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-2o 6561  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536  df-enq0 7607  df-nq0 7608  df-0nq0 7609  df-plq0 7610  df-mq0 7611  df-inp 7649  df-i1p 7650  df-iplp 7651  df-iltp 7653  df-enr 7909  df-nr 7910  df-ltr 7913  df-0r 7914
This theorem is referenced by:  prsrriota  7971  caucvgsrlemcl  7972  caucvgsrlemgt1  7978
  Copyright terms: Public domain W3C validator