ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srpospr GIF version

Theorem srpospr 7425
Description: Mapping from a signed real greater than zero to a positive real. (Contributed by Jim Kingdon, 25-Jun-2021.)
Assertion
Ref Expression
srpospr ((𝐴R ∧ 0R <R 𝐴) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem srpospr
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7370 . . 3 R = ((P × P) / ~R )
2 breq2 3871 . . . 4 ([⟨𝑎, 𝑏⟩] ~R = 𝐴 → (0R <R [⟨𝑎, 𝑏⟩] ~R ↔ 0R <R 𝐴))
3 eqeq2 2104 . . . . 5 ([⟨𝑎, 𝑏⟩] ~R = 𝐴 → ([⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ↔ [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴))
43reubidv 2564 . . . 4 ([⟨𝑎, 𝑏⟩] ~R = 𝐴 → (∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ↔ ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴))
52, 4imbi12d 233 . . 3 ([⟨𝑎, 𝑏⟩] ~R = 𝐴 → ((0R <R [⟨𝑎, 𝑏⟩] ~R → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ) ↔ (0R <R 𝐴 → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)))
6 gt0srpr 7391 . . . . . . . 8 (0R <R [⟨𝑎, 𝑏⟩] ~R𝑏<P 𝑎)
76biimpi 119 . . . . . . 7 (0R <R [⟨𝑎, 𝑏⟩] ~R𝑏<P 𝑎)
87adantl 272 . . . . . 6 (((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) → 𝑏<P 𝑎)
9 lteupri 7273 . . . . . 6 (𝑏<P 𝑎 → ∃!𝑥P (𝑏 +P 𝑥) = 𝑎)
108, 9syl 14 . . . . 5 (((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) → ∃!𝑥P (𝑏 +P 𝑥) = 𝑎)
11 simpr 109 . . . . . . . . 9 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → 𝑥P)
12 1pr 7210 . . . . . . . . . 10 1PP
1312a1i 9 . . . . . . . . 9 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → 1PP)
14 addclpr 7193 . . . . . . . . 9 ((𝑥P ∧ 1PP) → (𝑥 +P 1P) ∈ P)
1511, 13, 14syl2anc 404 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (𝑥 +P 1P) ∈ P)
16 simplll 501 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → 𝑎P)
17 simpllr 502 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → 𝑏P)
18 enreceq 7379 . . . . . . . 8 ((((𝑥 +P 1P) ∈ P ∧ 1PP) ∧ (𝑎P𝑏P)) → ([⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ↔ ((𝑥 +P 1P) +P 𝑏) = (1P +P 𝑎)))
1915, 13, 16, 17, 18syl22anc 1182 . . . . . . 7 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ([⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ↔ ((𝑥 +P 1P) +P 𝑏) = (1P +P 𝑎)))
20 addcomprg 7234 . . . . . . . . . . . 12 ((𝑥P ∧ 1PP) → (𝑥 +P 1P) = (1P +P 𝑥))
2111, 13, 20syl2anc 404 . . . . . . . . . . 11 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (𝑥 +P 1P) = (1P +P 𝑥))
2221oveq1d 5705 . . . . . . . . . 10 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((𝑥 +P 1P) +P 𝑏) = ((1P +P 𝑥) +P 𝑏))
23 addassprg 7235 . . . . . . . . . . 11 ((1PP𝑥P𝑏P) → ((1P +P 𝑥) +P 𝑏) = (1P +P (𝑥 +P 𝑏)))
2413, 11, 17, 23syl3anc 1181 . . . . . . . . . 10 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((1P +P 𝑥) +P 𝑏) = (1P +P (𝑥 +P 𝑏)))
2522, 24eqtrd 2127 . . . . . . . . 9 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((𝑥 +P 1P) +P 𝑏) = (1P +P (𝑥 +P 𝑏)))
2625eqeq1d 2103 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (((𝑥 +P 1P) +P 𝑏) = (1P +P 𝑎) ↔ (1P +P (𝑥 +P 𝑏)) = (1P +P 𝑎)))
27 addclpr 7193 . . . . . . . . . . 11 ((𝑥P𝑏P) → (𝑥 +P 𝑏) ∈ P)
2811, 17, 27syl2anc 404 . . . . . . . . . 10 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (𝑥 +P 𝑏) ∈ P)
29 addcanprg 7272 . . . . . . . . . 10 ((1PP ∧ (𝑥 +P 𝑏) ∈ P𝑎P) → ((1P +P (𝑥 +P 𝑏)) = (1P +P 𝑎) → (𝑥 +P 𝑏) = 𝑎))
3013, 28, 16, 29syl3anc 1181 . . . . . . . . 9 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((1P +P (𝑥 +P 𝑏)) = (1P +P 𝑎) → (𝑥 +P 𝑏) = 𝑎))
31 oveq2 5698 . . . . . . . . 9 ((𝑥 +P 𝑏) = 𝑎 → (1P +P (𝑥 +P 𝑏)) = (1P +P 𝑎))
3230, 31impbid1 141 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((1P +P (𝑥 +P 𝑏)) = (1P +P 𝑎) ↔ (𝑥 +P 𝑏) = 𝑎))
3326, 32bitrd 187 . . . . . . 7 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (((𝑥 +P 1P) +P 𝑏) = (1P +P 𝑎) ↔ (𝑥 +P 𝑏) = 𝑎))
34 addcomprg 7234 . . . . . . . . 9 ((𝑥P𝑏P) → (𝑥 +P 𝑏) = (𝑏 +P 𝑥))
3511, 17, 34syl2anc 404 . . . . . . . 8 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → (𝑥 +P 𝑏) = (𝑏 +P 𝑥))
3635eqeq1d 2103 . . . . . . 7 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((𝑥 +P 𝑏) = 𝑎 ↔ (𝑏 +P 𝑥) = 𝑎))
3719, 33, 363bitrrd 214 . . . . . 6 ((((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) ∧ 𝑥P) → ((𝑏 +P 𝑥) = 𝑎 ↔ [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ))
3837reubidva 2563 . . . . 5 (((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) → (∃!𝑥P (𝑏 +P 𝑥) = 𝑎 ↔ ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ))
3910, 38mpbid 146 . . . 4 (((𝑎P𝑏P) ∧ 0R <R [⟨𝑎, 𝑏⟩] ~R ) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R )
4039ex 114 . . 3 ((𝑎P𝑏P) → (0R <R [⟨𝑎, 𝑏⟩] ~R → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = [⟨𝑎, 𝑏⟩] ~R ))
411, 5, 40ecoptocl 6419 . 2 (𝐴R → (0R <R 𝐴 → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴))
4241imp 123 1 ((𝐴R ∧ 0R <R 𝐴) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1296  wcel 1445  ∃!wreu 2372  cop 3469   class class class wbr 3867  (class class class)co 5690  [cec 6330  Pcnp 6947  1Pc1p 6948   +P cpp 6949  <P cltp 6951   ~R cer 6952  Rcnr 6953  0Rc0r 6954   <R cltr 6959
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-eprel 4140  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-irdg 6173  df-1o 6219  df-2o 6220  df-oadd 6223  df-omul 6224  df-er 6332  df-ec 6334  df-qs 6338  df-ni 6960  df-pli 6961  df-mi 6962  df-lti 6963  df-plpq 7000  df-mpq 7001  df-enq 7003  df-nqqs 7004  df-plqqs 7005  df-mqqs 7006  df-1nqqs 7007  df-rq 7008  df-ltnqqs 7009  df-enq0 7080  df-nq0 7081  df-0nq0 7082  df-plq0 7083  df-mq0 7084  df-inp 7122  df-i1p 7123  df-iplp 7124  df-iltp 7126  df-enr 7369  df-nr 7370  df-ltr 7373  df-0r 7374
This theorem is referenced by:  prsrriota  7430  caucvgsrlemcl  7431  caucvgsrlemgt1  7437
  Copyright terms: Public domain W3C validator