![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr3d | GIF version |
Description: Deduction form of bitr3i 186. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr3d | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | bicomd 141 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
3 | bitr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
4 | 2, 3 | bitrd 188 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitrrd 215 3bitr3d 218 3bitr3rd 219 pm5.16 829 biassdc 1406 pm5.24dc 1409 anxordi 1411 sbequ12a 1784 drex1 1809 sbcomxyyz 1988 sb9v 1994 csbiebt 3120 prsspwg 3778 bnd2 4202 copsex2t 4274 copsex2g 4275 fnssresb 5366 fcnvres 5437 foelcdmi 5609 dmfco 5625 funimass5 5675 fmptco 5724 cbvfo 5828 cbvexfo 5829 isocnv 5854 isoini 5861 isoselem 5863 riota2df 5894 ovmpodxf 6044 caovcanrd 6082 fidcenumlemrks 7012 ordiso2 7094 ltpiord 7379 dfplpq2 7414 dfmpq2 7415 enqeceq 7419 enq0eceq 7497 enreceq 7796 ltpsrprg 7863 mappsrprg 7864 cnegexlem3 8196 subeq0 8245 negcon1 8271 subexsub 8391 subeqrev 8395 lesub 8460 ltsub13 8462 subge0 8494 div11ap 8719 divmuleqap 8736 ltmuldiv2 8894 lemuldiv2 8901 nn1suc 9001 addltmul 9219 elnnnn0 9283 znn0sub 9382 prime 9416 indstr 9658 qapne 9704 qlttri2 9706 fz1n 10110 fzrev3 10153 fzonlt0 10234 divfl0 10365 modqsubdir 10464 fzfig 10501 wrdlenge1n0 10947 sqrt11 11183 sqrtsq2 11187 absdiflt 11236 absdifle 11237 nnabscl 11244 minclpr 11380 xrnegiso 11405 xrnegcon1d 11407 clim2 11426 climshft2 11449 sumrbdc 11522 prodrbdclem2 11716 fprodssdc 11733 sinbnd 11895 cosbnd 11896 dvdscmulr 11963 dvdsmulcr 11964 oddm1even 12016 qredeq 12234 cncongr2 12242 isprm3 12256 prmrp 12283 sqrt2irr 12300 crth 12362 pcdvdsb 12458 ssnnctlemct 12603 xpsfrnel2 12929 gsumval2 12980 grpid 13111 grpidrcan 13137 grpidlcan 13138 grplmulf1o 13146 imasgrp2 13180 ghmeqker 13341 abladdsub4 13384 imasrng 13452 imasring 13560 lspsnss2 13915 znf1o 14139 znidom 14145 znunit 14147 znrrg 14148 eltg3 14225 eltop 14237 eltop2 14238 eltop3 14239 lmbrf 14383 cncnpi 14396 txcn 14443 hmeoimaf1o 14482 ismet2 14522 xmseq0 14636 wilthlem1 15112 lgsne0 15154 lgsquadlem1 15191 2sqlem7 15208 |
Copyright terms: Public domain | W3C validator |