Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr3d | GIF version |
Description: Deduction form of bitr3i 185. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr3d | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | bicomd 140 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
3 | bitr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
4 | 2, 3 | bitrd 187 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitrrd 214 3bitr3d 217 3bitr3rd 218 pm5.16 818 biassdc 1385 pm5.24dc 1388 anxordi 1390 sbequ12a 1761 drex1 1786 sbcomxyyz 1960 sb9v 1966 csbiebt 3083 prsspwg 3731 bnd2 4151 copsex2t 4222 copsex2g 4223 fnssresb 5299 fcnvres 5370 dmfco 5553 funimass5 5601 fmptco 5650 cbvfo 5752 cbvexfo 5753 isocnv 5778 isoini 5785 isoselem 5787 riota2df 5817 ovmpodxf 5963 caovcanrd 6001 fidcenumlemrks 6914 ordiso2 6996 ltpiord 7256 dfplpq2 7291 dfmpq2 7292 enqeceq 7296 enq0eceq 7374 enreceq 7673 ltpsrprg 7740 mappsrprg 7741 cnegexlem3 8071 subeq0 8120 negcon1 8146 subexsub 8266 subeqrev 8270 lesub 8335 ltsub13 8337 subge0 8369 div11ap 8592 divmuleqap 8609 ltmuldiv2 8766 lemuldiv2 8773 nn1suc 8872 addltmul 9089 elnnnn0 9153 znn0sub 9252 prime 9286 indstr 9527 qapne 9573 qlttri2 9575 fz1n 9975 fzrev3 10018 fzonlt0 10098 divfl0 10227 modqsubdir 10324 fzfig 10361 sqrt11 10977 sqrtsq2 10981 absdiflt 11030 absdifle 11031 nnabscl 11038 minclpr 11174 xrnegiso 11199 xrnegcon1d 11201 clim2 11220 climshft2 11243 sumrbdc 11316 prodrbdclem2 11510 fprodssdc 11527 sinbnd 11689 cosbnd 11690 dvdscmulr 11756 dvdsmulcr 11757 oddm1even 11808 qredeq 12024 cncongr2 12032 isprm3 12046 prmrp 12073 sqrt2irr 12090 crth 12152 pcdvdsb 12247 ssnnctlemct 12375 eltg3 12657 eltop 12669 eltop2 12670 eltop3 12671 lmbrf 12815 cncnpi 12828 txcn 12875 hmeoimaf1o 12914 ismet2 12954 xmseq0 13068 lgsne0 13539 2sqlem7 13557 |
Copyright terms: Public domain | W3C validator |