| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3d | GIF version | ||
| Description: Deduction form of bitr3i 186. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr3d | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | bicomd 141 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| 3 | bitr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 4 | 2, 3 | bitrd 188 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrrd 215 3bitr3d 218 3bitr3rd 219 pm5.16 833 biassdc 1437 pm5.24dc 1440 anxordi 1442 sbequ12a 1819 drex1 1844 sbcomxyyz 2023 sb9v 2029 csbiebt 3164 prsspwg 3828 ssprss 3829 bnd2 4257 copsex2t 4331 copsex2g 4332 fnssresb 5435 fcnvres 5511 foelcdmi 5688 dmfco 5704 funimass5 5754 fmptco 5803 cbvfo 5915 cbvexfo 5916 isocnv 5941 isoini 5948 isoselem 5950 riota2df 5982 ovmpodxf 6136 caovcanrd 6175 fidcenumlemrks 7128 ordiso2 7210 ltpiord 7514 dfplpq2 7549 dfmpq2 7550 enqeceq 7554 enq0eceq 7632 enreceq 7931 ltpsrprg 7998 mappsrprg 7999 cnegexlem3 8331 subeq0 8380 negcon1 8406 subexsub 8526 subeqrev 8530 lesub 8596 ltsub13 8598 subge0 8630 div11ap 8855 divmuleqap 8872 ltmuldiv2 9030 lemuldiv2 9037 nn1suc 9137 addltmul 9356 elnnnn0 9420 znn0sub 9520 prime 9554 indstr 9796 qapne 9842 qlttri2 9844 fz1n 10248 fzrev3 10291 fzo0n 10372 fzonlt0 10373 divfl0 10524 modqsubdir 10623 fzfig 10660 wrdlenge1n0 11113 pfxccat3a 11278 sqrt11 11558 sqrtsq2 11562 absdiflt 11611 absdifle 11612 nnabscl 11619 minclpr 11756 xrnegiso 11781 xrnegcon1d 11783 clim2 11802 climshft2 11825 sumrbdc 11898 prodrbdclem2 12092 fprodssdc 12109 sinbnd 12271 cosbnd 12272 dvdscmulr 12339 dvdsmulcr 12340 oddm1even 12394 bitsmod 12475 bitsinv1lem 12480 qredeq 12626 cncongr2 12634 isprm3 12648 prmrp 12675 sqrt2irr 12692 crth 12754 pcdvdsb 12851 ssnnctlemct 13025 pwselbasb 13334 xpsfrnel2 13387 gsumval2 13438 imasmnd2 13493 grpid 13580 grpidrcan 13606 grpidlcan 13607 grplmulf1o 13615 imasgrp2 13655 ghmeqker 13816 abladdsub4 13859 imasrng 13927 imasring 14035 lspsnss2 14391 znf1o 14623 znidom 14629 znunit 14631 znrrg 14632 eltg3 14739 eltop 14751 eltop2 14752 eltop3 14753 lmbrf 14897 cncnpi 14910 txcn 14957 hmeoimaf1o 14996 ismet2 15036 xmseq0 15150 wilthlem1 15662 fsumdvdsmul 15673 lgsne0 15725 lgsquadlem1 15764 lgsquadlem2 15765 2sqlem7 15808 |
| Copyright terms: Public domain | W3C validator |