| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3d | GIF version | ||
| Description: Deduction form of bitr3i 186. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr3d | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | bicomd 141 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| 3 | bitr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 4 | 2, 3 | bitrd 188 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrrd 215 3bitr3d 218 3bitr3rd 219 pm5.16 829 biassdc 1406 pm5.24dc 1409 anxordi 1411 sbequ12a 1787 drex1 1812 sbcomxyyz 1991 sb9v 1997 csbiebt 3124 prsspwg 3783 bnd2 4207 copsex2t 4279 copsex2g 4280 fnssresb 5373 fcnvres 5444 foelcdmi 5616 dmfco 5632 funimass5 5682 fmptco 5731 cbvfo 5835 cbvexfo 5836 isocnv 5861 isoini 5868 isoselem 5870 riota2df 5901 ovmpodxf 6052 caovcanrd 6091 fidcenumlemrks 7028 ordiso2 7110 ltpiord 7403 dfplpq2 7438 dfmpq2 7439 enqeceq 7443 enq0eceq 7521 enreceq 7820 ltpsrprg 7887 mappsrprg 7888 cnegexlem3 8220 subeq0 8269 negcon1 8295 subexsub 8415 subeqrev 8419 lesub 8485 ltsub13 8487 subge0 8519 div11ap 8744 divmuleqap 8761 ltmuldiv2 8919 lemuldiv2 8926 nn1suc 9026 addltmul 9245 elnnnn0 9309 znn0sub 9408 prime 9442 indstr 9684 qapne 9730 qlttri2 9732 fz1n 10136 fzrev3 10179 fzonlt0 10260 divfl0 10403 modqsubdir 10502 fzfig 10539 wrdlenge1n0 10985 sqrt11 11221 sqrtsq2 11225 absdiflt 11274 absdifle 11275 nnabscl 11282 minclpr 11419 xrnegiso 11444 xrnegcon1d 11446 clim2 11465 climshft2 11488 sumrbdc 11561 prodrbdclem2 11755 fprodssdc 11772 sinbnd 11934 cosbnd 11935 dvdscmulr 12002 dvdsmulcr 12003 oddm1even 12057 bitsmod 12138 bitsinv1lem 12143 qredeq 12289 cncongr2 12297 isprm3 12311 prmrp 12338 sqrt2irr 12355 crth 12417 pcdvdsb 12514 ssnnctlemct 12688 pwselbasb 12995 xpsfrnel2 13048 gsumval2 13099 imasmnd2 13154 grpid 13241 grpidrcan 13267 grpidlcan 13268 grplmulf1o 13276 imasgrp2 13316 ghmeqker 13477 abladdsub4 13520 imasrng 13588 imasring 13696 lspsnss2 14051 znf1o 14283 znidom 14289 znunit 14291 znrrg 14292 eltg3 14377 eltop 14389 eltop2 14390 eltop3 14391 lmbrf 14535 cncnpi 14548 txcn 14595 hmeoimaf1o 14634 ismet2 14674 xmseq0 14788 wilthlem1 15300 fsumdvdsmul 15311 lgsne0 15363 lgsquadlem1 15402 lgsquadlem2 15403 2sqlem7 15446 |
| Copyright terms: Public domain | W3C validator |