![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr3d | GIF version |
Description: Deduction form of bitr3i 185. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr3d | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | bicomd 140 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
3 | bitr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
4 | 2, 3 | bitrd 187 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitrrd 214 3bitr3d 217 3bitr3rd 218 pm5.16 774 biassdc 1332 pm5.24dc 1335 anxordi 1337 sbequ12a 1704 drex1 1727 sbcomxyyz 1895 sb9v 1903 csbiebt 2968 prsspwg 3602 bnd2 4014 copsex2t 4081 copsex2g 4082 fnssresb 5139 fcnvres 5207 dmfco 5385 funimass5 5430 fmptco 5478 cbvfo 5578 cbvexfo 5579 isocnv 5604 isoini 5611 isoselem 5613 riota2df 5642 ovmpt2dxf 5784 caovcanrd 5822 fidcenumlemrks 6716 ordiso2 6782 ltpiord 6939 dfplpq2 6974 dfmpq2 6975 enqeceq 6979 enq0eceq 7057 enreceq 7343 cnegexlem3 7720 subeq0 7769 negcon1 7795 subexsub 7911 subeqrev 7915 lesub 7980 ltsub13 7982 subge0 8014 div11ap 8228 divmuleqap 8245 ltmuldiv2 8397 lemuldiv2 8404 nn1suc 8502 addltmul 8713 elnnnn0 8777 znn0sub 8876 prime 8906 indstr 9142 qapne 9185 qlttri2 9187 fz1n 9519 fzrev3 9562 fzonlt0 9639 divfl0 9764 modqsubdir 9861 fzfig 9898 sqrt11 10533 sqrtsq2 10537 absdiflt 10586 absdifle 10587 nnabscl 10594 clim2 10732 climshft2 10756 isumrb 10829 sinbnd 11104 cosbnd 11105 dvdscmulr 11164 dvdsmulcr 11165 oddm1even 11214 qredeq 11417 cncongr2 11425 isprm3 11439 prmrp 11463 sqrt2irr 11480 crth 11539 eltg3 11818 eltop 11830 eltop2 11831 eltop3 11832 |
Copyright terms: Public domain | W3C validator |