Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr3d | GIF version |
Description: Deduction form of bitr3i 185. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr3d | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | bicomd 140 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
3 | bitr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
4 | 2, 3 | bitrd 187 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitrrd 214 3bitr3d 217 3bitr3rd 218 pm5.16 823 biassdc 1390 pm5.24dc 1393 anxordi 1395 sbequ12a 1766 drex1 1791 sbcomxyyz 1965 sb9v 1971 csbiebt 3088 prsspwg 3739 bnd2 4159 copsex2t 4230 copsex2g 4231 fnssresb 5310 fcnvres 5381 dmfco 5564 funimass5 5613 fmptco 5662 cbvfo 5764 cbvexfo 5765 isocnv 5790 isoini 5797 isoselem 5799 riota2df 5829 ovmpodxf 5978 caovcanrd 6016 fidcenumlemrks 6930 ordiso2 7012 ltpiord 7281 dfplpq2 7316 dfmpq2 7317 enqeceq 7321 enq0eceq 7399 enreceq 7698 ltpsrprg 7765 mappsrprg 7766 cnegexlem3 8096 subeq0 8145 negcon1 8171 subexsub 8291 subeqrev 8295 lesub 8360 ltsub13 8362 subge0 8394 div11ap 8617 divmuleqap 8634 ltmuldiv2 8791 lemuldiv2 8798 nn1suc 8897 addltmul 9114 elnnnn0 9178 znn0sub 9277 prime 9311 indstr 9552 qapne 9598 qlttri2 9600 fz1n 10000 fzrev3 10043 fzonlt0 10123 divfl0 10252 modqsubdir 10349 fzfig 10386 sqrt11 11003 sqrtsq2 11007 absdiflt 11056 absdifle 11057 nnabscl 11064 minclpr 11200 xrnegiso 11225 xrnegcon1d 11227 clim2 11246 climshft2 11269 sumrbdc 11342 prodrbdclem2 11536 fprodssdc 11553 sinbnd 11715 cosbnd 11716 dvdscmulr 11782 dvdsmulcr 11783 oddm1even 11834 qredeq 12050 cncongr2 12058 isprm3 12072 prmrp 12099 sqrt2irr 12116 crth 12178 pcdvdsb 12273 ssnnctlemct 12401 grpid 12742 grpidrcan 12764 grpidlcan 12765 eltg3 12851 eltop 12863 eltop2 12864 eltop3 12865 lmbrf 13009 cncnpi 13022 txcn 13069 hmeoimaf1o 13108 ismet2 13148 xmseq0 13262 lgsne0 13733 2sqlem7 13751 |
Copyright terms: Public domain | W3C validator |