| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3d | GIF version | ||
| Description: Deduction form of bitr3i 186. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr3d | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | bicomd 141 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| 3 | bitr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 4 | 2, 3 | bitrd 188 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrrd 215 3bitr3d 218 3bitr3rd 219 pm5.16 829 biassdc 1406 pm5.24dc 1409 anxordi 1411 sbequ12a 1787 drex1 1812 sbcomxyyz 1991 sb9v 1997 csbiebt 3124 prsspwg 3782 bnd2 4206 copsex2t 4278 copsex2g 4279 fnssresb 5370 fcnvres 5441 foelcdmi 5613 dmfco 5629 funimass5 5679 fmptco 5728 cbvfo 5832 cbvexfo 5833 isocnv 5858 isoini 5865 isoselem 5867 riota2df 5898 ovmpodxf 6048 caovcanrd 6087 fidcenumlemrks 7019 ordiso2 7101 ltpiord 7386 dfplpq2 7421 dfmpq2 7422 enqeceq 7426 enq0eceq 7504 enreceq 7803 ltpsrprg 7870 mappsrprg 7871 cnegexlem3 8203 subeq0 8252 negcon1 8278 subexsub 8398 subeqrev 8402 lesub 8468 ltsub13 8470 subge0 8502 div11ap 8727 divmuleqap 8744 ltmuldiv2 8902 lemuldiv2 8909 nn1suc 9009 addltmul 9228 elnnnn0 9292 znn0sub 9391 prime 9425 indstr 9667 qapne 9713 qlttri2 9715 fz1n 10119 fzrev3 10162 fzonlt0 10243 divfl0 10386 modqsubdir 10485 fzfig 10522 wrdlenge1n0 10968 sqrt11 11204 sqrtsq2 11208 absdiflt 11257 absdifle 11258 nnabscl 11265 minclpr 11402 xrnegiso 11427 xrnegcon1d 11429 clim2 11448 climshft2 11471 sumrbdc 11544 prodrbdclem2 11738 fprodssdc 11755 sinbnd 11917 cosbnd 11918 dvdscmulr 11985 dvdsmulcr 11986 oddm1even 12040 qredeq 12264 cncongr2 12272 isprm3 12286 prmrp 12313 sqrt2irr 12330 crth 12392 pcdvdsb 12489 ssnnctlemct 12663 xpsfrnel2 12989 gsumval2 13040 grpid 13171 grpidrcan 13197 grpidlcan 13198 grplmulf1o 13206 imasgrp2 13240 ghmeqker 13401 abladdsub4 13444 imasrng 13512 imasring 13620 lspsnss2 13975 znf1o 14207 znidom 14213 znunit 14215 znrrg 14216 eltg3 14293 eltop 14305 eltop2 14306 eltop3 14307 lmbrf 14451 cncnpi 14464 txcn 14511 hmeoimaf1o 14550 ismet2 14590 xmseq0 14704 wilthlem1 15216 fsumdvdsmul 15227 lgsne0 15279 lgsquadlem1 15318 lgsquadlem2 15319 2sqlem7 15362 |
| Copyright terms: Public domain | W3C validator |