![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr3d | GIF version |
Description: Deduction form of bitr3i 186. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr3d | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | bicomd 141 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
3 | bitr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
4 | 2, 3 | bitrd 188 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitrrd 215 3bitr3d 218 3bitr3rd 219 pm5.16 829 biassdc 1406 pm5.24dc 1409 anxordi 1411 sbequ12a 1784 drex1 1809 sbcomxyyz 1988 sb9v 1994 csbiebt 3121 prsspwg 3779 bnd2 4203 copsex2t 4275 copsex2g 4276 fnssresb 5367 fcnvres 5438 foelcdmi 5610 dmfco 5626 funimass5 5676 fmptco 5725 cbvfo 5829 cbvexfo 5830 isocnv 5855 isoini 5862 isoselem 5864 riota2df 5895 ovmpodxf 6045 caovcanrd 6084 fidcenumlemrks 7014 ordiso2 7096 ltpiord 7381 dfplpq2 7416 dfmpq2 7417 enqeceq 7421 enq0eceq 7499 enreceq 7798 ltpsrprg 7865 mappsrprg 7866 cnegexlem3 8198 subeq0 8247 negcon1 8273 subexsub 8393 subeqrev 8397 lesub 8462 ltsub13 8464 subge0 8496 div11ap 8721 divmuleqap 8738 ltmuldiv2 8896 lemuldiv2 8903 nn1suc 9003 addltmul 9222 elnnnn0 9286 znn0sub 9385 prime 9419 indstr 9661 qapne 9707 qlttri2 9709 fz1n 10113 fzrev3 10156 fzonlt0 10237 divfl0 10368 modqsubdir 10467 fzfig 10504 wrdlenge1n0 10950 sqrt11 11186 sqrtsq2 11190 absdiflt 11239 absdifle 11240 nnabscl 11247 minclpr 11383 xrnegiso 11408 xrnegcon1d 11410 clim2 11429 climshft2 11452 sumrbdc 11525 prodrbdclem2 11719 fprodssdc 11736 sinbnd 11898 cosbnd 11899 dvdscmulr 11966 dvdsmulcr 11967 oddm1even 12019 qredeq 12237 cncongr2 12245 isprm3 12259 prmrp 12286 sqrt2irr 12303 crth 12365 pcdvdsb 12461 ssnnctlemct 12606 xpsfrnel2 12932 gsumval2 12983 grpid 13114 grpidrcan 13140 grpidlcan 13141 grplmulf1o 13149 imasgrp2 13183 ghmeqker 13344 abladdsub4 13387 imasrng 13455 imasring 13563 lspsnss2 13918 znf1o 14150 znidom 14156 znunit 14158 znrrg 14159 eltg3 14236 eltop 14248 eltop2 14249 eltop3 14250 lmbrf 14394 cncnpi 14407 txcn 14454 hmeoimaf1o 14493 ismet2 14533 xmseq0 14647 wilthlem1 15153 lgsne0 15195 lgsquadlem1 15234 lgsquadlem2 15235 2sqlem7 15278 |
Copyright terms: Public domain | W3C validator |