Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr3d | GIF version |
Description: Deduction form of bitr3i 186. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr3d | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | bicomd 141 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
3 | bitr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
4 | 2, 3 | bitrd 188 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitrrd 215 3bitr3d 218 3bitr3rd 219 pm5.16 828 biassdc 1395 pm5.24dc 1398 anxordi 1400 sbequ12a 1771 drex1 1796 sbcomxyyz 1970 sb9v 1976 csbiebt 3094 prsspwg 3748 bnd2 4168 copsex2t 4239 copsex2g 4240 fnssresb 5320 fcnvres 5391 foelcdmi 5560 dmfco 5576 funimass5 5625 fmptco 5674 cbvfo 5776 cbvexfo 5777 isocnv 5802 isoini 5809 isoselem 5811 riota2df 5841 ovmpodxf 5990 caovcanrd 6028 fidcenumlemrks 6942 ordiso2 7024 ltpiord 7293 dfplpq2 7328 dfmpq2 7329 enqeceq 7333 enq0eceq 7411 enreceq 7710 ltpsrprg 7777 mappsrprg 7778 cnegexlem3 8108 subeq0 8157 negcon1 8183 subexsub 8303 subeqrev 8307 lesub 8372 ltsub13 8374 subge0 8406 div11ap 8629 divmuleqap 8646 ltmuldiv2 8803 lemuldiv2 8810 nn1suc 8909 addltmul 9126 elnnnn0 9190 znn0sub 9289 prime 9323 indstr 9564 qapne 9610 qlttri2 9612 fz1n 10012 fzrev3 10055 fzonlt0 10135 divfl0 10264 modqsubdir 10361 fzfig 10398 sqrt11 11014 sqrtsq2 11018 absdiflt 11067 absdifle 11068 nnabscl 11075 minclpr 11211 xrnegiso 11236 xrnegcon1d 11238 clim2 11257 climshft2 11280 sumrbdc 11353 prodrbdclem2 11547 fprodssdc 11564 sinbnd 11726 cosbnd 11727 dvdscmulr 11793 dvdsmulcr 11794 oddm1even 11845 qredeq 12061 cncongr2 12069 isprm3 12083 prmrp 12110 sqrt2irr 12127 crth 12189 pcdvdsb 12284 ssnnctlemct 12412 grpid 12772 grpidrcan 12794 grpidlcan 12795 grplmulf1o 12803 abladdsub4 12913 eltg3 13108 eltop 13120 eltop2 13121 eltop3 13122 lmbrf 13266 cncnpi 13279 txcn 13326 hmeoimaf1o 13365 ismet2 13405 xmseq0 13519 lgsne0 13990 2sqlem7 14008 |
Copyright terms: Public domain | W3C validator |