| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3d | GIF version | ||
| Description: Deduction form of bitr3i 186. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr3d | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | bicomd 141 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| 3 | bitr3d.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 4 | 2, 3 | bitrd 188 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrrd 215 3bitr3d 218 3bitr3rd 219 pm5.16 830 biassdc 1415 pm5.24dc 1418 anxordi 1420 sbequ12a 1797 drex1 1822 sbcomxyyz 2001 sb9v 2007 csbiebt 3134 prsspwg 3795 bnd2 4221 copsex2t 4293 copsex2g 4294 fnssresb 5393 fcnvres 5466 foelcdmi 5638 dmfco 5654 funimass5 5704 fmptco 5753 cbvfo 5861 cbvexfo 5862 isocnv 5887 isoini 5894 isoselem 5896 riota2df 5927 ovmpodxf 6078 caovcanrd 6117 fidcenumlemrks 7062 ordiso2 7144 ltpiord 7439 dfplpq2 7474 dfmpq2 7475 enqeceq 7479 enq0eceq 7557 enreceq 7856 ltpsrprg 7923 mappsrprg 7924 cnegexlem3 8256 subeq0 8305 negcon1 8331 subexsub 8451 subeqrev 8455 lesub 8521 ltsub13 8523 subge0 8555 div11ap 8780 divmuleqap 8797 ltmuldiv2 8955 lemuldiv2 8962 nn1suc 9062 addltmul 9281 elnnnn0 9345 znn0sub 9445 prime 9479 indstr 9721 qapne 9767 qlttri2 9769 fz1n 10173 fzrev3 10216 fzo0n 10297 fzonlt0 10298 divfl0 10446 modqsubdir 10545 fzfig 10582 wrdlenge1n0 11034 sqrt11 11394 sqrtsq2 11398 absdiflt 11447 absdifle 11448 nnabscl 11455 minclpr 11592 xrnegiso 11617 xrnegcon1d 11619 clim2 11638 climshft2 11661 sumrbdc 11734 prodrbdclem2 11928 fprodssdc 11945 sinbnd 12107 cosbnd 12108 dvdscmulr 12175 dvdsmulcr 12176 oddm1even 12230 bitsmod 12311 bitsinv1lem 12316 qredeq 12462 cncongr2 12470 isprm3 12484 prmrp 12511 sqrt2irr 12528 crth 12590 pcdvdsb 12687 ssnnctlemct 12861 pwselbasb 13169 xpsfrnel2 13222 gsumval2 13273 imasmnd2 13328 grpid 13415 grpidrcan 13441 grpidlcan 13442 grplmulf1o 13450 imasgrp2 13490 ghmeqker 13651 abladdsub4 13694 imasrng 13762 imasring 13870 lspsnss2 14225 znf1o 14457 znidom 14463 znunit 14465 znrrg 14466 eltg3 14573 eltop 14585 eltop2 14586 eltop3 14587 lmbrf 14731 cncnpi 14744 txcn 14791 hmeoimaf1o 14830 ismet2 14870 xmseq0 14984 wilthlem1 15496 fsumdvdsmul 15507 lgsne0 15559 lgsquadlem1 15598 lgsquadlem2 15599 2sqlem7 15642 |
| Copyright terms: Public domain | W3C validator |