| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2d | GIF version | ||
| Description: Deduction form of bitr2i 185. (Contributed by NM, 9-Jun-2004.) |
| Ref | Expression |
|---|---|
| bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr2d.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr2d | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 3 | 1, 2 | bitrd 188 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3 | bicomd 141 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrrd 215 3bitr2rd 217 pm5.18dc 887 drex1 1824 elrnmpt1 4951 xpopth 6292 sbcopeq1a 6303 ltnnnq 7578 ltaddsub 8551 leaddsub 8553 posdif 8570 lesub1 8571 ltsub1 8573 lesub0 8594 possumd 8684 subap0 8758 ltdivmul 8991 ledivmul 8992 zlem1lt 9471 zltlem1 9472 negelrp 9851 fzrev2 10249 fz1sbc 10260 elfzp1b 10261 qtri3or 10427 sumsqeq0 10807 sqrtle 11513 sqrtlt 11514 absgt0ap 11576 iser3shft 11823 dvdssubr 12316 gcdn0gt0 12465 divgcdcoprmex 12590 pcfac 12839 gsumfzval 13390 lmbrf 14854 logge0b 15529 loggt0b 15530 logle1b 15531 loglt1b 15532 lgsne0 15682 lgsprme0 15686 |
| Copyright terms: Public domain | W3C validator |