Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr2d | GIF version |
Description: Deduction form of bitr2i 184. (Contributed by NM, 9-Jun-2004.) |
Ref | Expression |
---|---|
bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr2d.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr2d | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
3 | 1, 2 | bitrd 187 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3 | bicomd 140 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitrrd 214 3bitr2rd 216 pm5.18dc 873 drex1 1786 elrnmpt1 4855 xpopth 6144 sbcopeq1a 6155 ltnnnq 7364 ltaddsub 8334 leaddsub 8336 posdif 8353 lesub1 8354 ltsub1 8356 lesub0 8377 possumd 8467 subap0 8541 ltdivmul 8771 ledivmul 8772 zlem1lt 9247 zltlem1 9248 negelrp 9623 fzrev2 10020 fz1sbc 10031 elfzp1b 10032 qtri3or 10178 sumsqeq0 10533 sqrtle 10978 sqrtlt 10979 absgt0ap 11041 iser3shft 11287 dvdssubr 11779 gcdn0gt0 11911 divgcdcoprmex 12034 pcfac 12280 lmbrf 12865 logge0b 13461 loggt0b 13462 logle1b 13463 loglt1b 13464 lgsne0 13589 lgsprme0 13593 |
Copyright terms: Public domain | W3C validator |