| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2d | GIF version | ||
| Description: Deduction form of bitr2i 185. (Contributed by NM, 9-Jun-2004.) |
| Ref | Expression |
|---|---|
| bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr2d.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr2d | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 3 | 1, 2 | bitrd 188 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3 | bicomd 141 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrrd 215 3bitr2rd 217 pm5.18dc 888 drex1 1844 elrnmpt1 4975 xpopth 6328 sbcopeq1a 6339 ltnnnq 7618 ltaddsub 8591 leaddsub 8593 posdif 8610 lesub1 8611 ltsub1 8613 lesub0 8634 possumd 8724 subap0 8798 ltdivmul 9031 ledivmul 9032 zlem1lt 9511 zltlem1 9512 negelrp 9891 fzrev2 10289 fz1sbc 10300 elfzp1b 10301 qtri3or 10468 sumsqeq0 10848 sqrtle 11555 sqrtlt 11556 absgt0ap 11618 iser3shft 11865 dvdssubr 12358 gcdn0gt0 12507 divgcdcoprmex 12632 pcfac 12881 gsumfzval 13432 lmbrf 14897 logge0b 15572 loggt0b 15573 logle1b 15574 loglt1b 15575 lgsne0 15725 lgsprme0 15729 |
| Copyright terms: Public domain | W3C validator |