![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr2d | GIF version |
Description: Deduction form of bitr2i 185. (Contributed by NM, 9-Jun-2004.) |
Ref | Expression |
---|---|
bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr2d.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr2d | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
3 | 1, 2 | bitrd 188 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3 | bicomd 141 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitrrd 215 3bitr2rd 217 pm5.18dc 884 drex1 1809 elrnmpt1 4914 xpopth 6231 sbcopeq1a 6242 ltnnnq 7485 ltaddsub 8457 leaddsub 8459 posdif 8476 lesub1 8477 ltsub1 8479 lesub0 8500 possumd 8590 subap0 8664 ltdivmul 8897 ledivmul 8898 zlem1lt 9376 zltlem1 9377 negelrp 9756 fzrev2 10154 fz1sbc 10165 elfzp1b 10166 qtri3or 10313 sumsqeq0 10692 sqrtle 11183 sqrtlt 11184 absgt0ap 11246 iser3shft 11492 dvdssubr 11985 gcdn0gt0 12118 divgcdcoprmex 12243 pcfac 12491 gsumfzval 12977 lmbrf 14394 logge0b 15066 loggt0b 15067 logle1b 15068 loglt1b 15069 lgsne0 15195 lgsprme0 15199 |
Copyright terms: Public domain | W3C validator |