![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr2d | GIF version |
Description: Deduction form of bitr2i 184. (Contributed by NM, 9-Jun-2004.) |
Ref | Expression |
---|---|
bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr2d.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr2d | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
3 | 1, 2 | bitrd 187 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3 | bicomd 140 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitrrd 214 3bitr2rd 216 pm5.18dc 821 drex1 1737 elrnmpt1 4728 xpopth 6004 sbcopeq1a 6015 ltnnnq 7132 ltaddsub 8065 leaddsub 8067 posdif 8084 lesub1 8085 ltsub1 8087 lesub0 8108 possumd 8197 subap0 8270 ltdivmul 8492 ledivmul 8493 zlem1lt 8962 zltlem1 8963 fzrev2 9706 fz1sbc 9717 elfzp1b 9718 qtri3or 9861 sumsqeq0 10212 sqrtle 10648 sqrtlt 10649 absgt0ap 10711 iser3shft 10954 dvdssubr 11334 gcdn0gt0 11461 divgcdcoprmex 11576 lmbrf 12165 |
Copyright terms: Public domain | W3C validator |