| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2d | GIF version | ||
| Description: Deduction form of bitr2i 185. (Contributed by NM, 9-Jun-2004.) |
| Ref | Expression |
|---|---|
| bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr2d.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr2d | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 3 | 1, 2 | bitrd 188 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3 | bicomd 141 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrrd 215 3bitr2rd 217 pm5.18dc 884 drex1 1812 elrnmpt1 4918 xpopth 6243 sbcopeq1a 6254 ltnnnq 7509 ltaddsub 8482 leaddsub 8484 posdif 8501 lesub1 8502 ltsub1 8504 lesub0 8525 possumd 8615 subap0 8689 ltdivmul 8922 ledivmul 8923 zlem1lt 9401 zltlem1 9402 negelrp 9781 fzrev2 10179 fz1sbc 10190 elfzp1b 10191 qtri3or 10349 sumsqeq0 10729 sqrtle 11220 sqrtlt 11221 absgt0ap 11283 iser3shft 11530 dvdssubr 12023 gcdn0gt0 12172 divgcdcoprmex 12297 pcfac 12546 gsumfzval 13095 lmbrf 14537 logge0b 15212 loggt0b 15213 logle1b 15214 loglt1b 15215 lgsne0 15365 lgsprme0 15369 |
| Copyright terms: Public domain | W3C validator |