| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2d | GIF version | ||
| Description: Deduction form of bitr2i 185. (Contributed by NM, 9-Jun-2004.) |
| Ref | Expression |
|---|---|
| bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr2d.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr2d | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 3 | 1, 2 | bitrd 188 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3 | bicomd 141 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrrd 215 3bitr2rd 217 pm5.18dc 885 drex1 1822 elrnmpt1 4934 xpopth 6269 sbcopeq1a 6280 ltnnnq 7543 ltaddsub 8516 leaddsub 8518 posdif 8535 lesub1 8536 ltsub1 8538 lesub0 8559 possumd 8649 subap0 8723 ltdivmul 8956 ledivmul 8957 zlem1lt 9436 zltlem1 9437 negelrp 9816 fzrev2 10214 fz1sbc 10225 elfzp1b 10226 qtri3or 10390 sumsqeq0 10770 sqrtle 11391 sqrtlt 11392 absgt0ap 11454 iser3shft 11701 dvdssubr 12194 gcdn0gt0 12343 divgcdcoprmex 12468 pcfac 12717 gsumfzval 13267 lmbrf 14731 logge0b 15406 loggt0b 15407 logle1b 15408 loglt1b 15409 lgsne0 15559 lgsprme0 15563 |
| Copyright terms: Public domain | W3C validator |