![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr2d | GIF version |
Description: Deduction form of bitr2i 185. (Contributed by NM, 9-Jun-2004.) |
Ref | Expression |
---|---|
bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr2d.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr2d | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
3 | 1, 2 | bitrd 188 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3 | bicomd 141 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitrrd 215 3bitr2rd 217 pm5.18dc 884 drex1 1809 elrnmpt1 4913 xpopth 6229 sbcopeq1a 6240 ltnnnq 7483 ltaddsub 8455 leaddsub 8457 posdif 8474 lesub1 8475 ltsub1 8477 lesub0 8498 possumd 8588 subap0 8662 ltdivmul 8895 ledivmul 8896 zlem1lt 9373 zltlem1 9374 negelrp 9753 fzrev2 10151 fz1sbc 10162 elfzp1b 10163 qtri3or 10310 sumsqeq0 10689 sqrtle 11180 sqrtlt 11181 absgt0ap 11243 iser3shft 11489 dvdssubr 11982 gcdn0gt0 12115 divgcdcoprmex 12240 pcfac 12488 gsumfzval 12974 lmbrf 14383 logge0b 15025 loggt0b 15026 logle1b 15027 loglt1b 15028 lgsne0 15154 lgsprme0 15158 |
Copyright terms: Public domain | W3C validator |