| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3bitrrd | Unicode version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) | 
| Ref | Expression | 
|---|---|
| 3bitrd.1 | 
 | 
| 3bitrd.2 | 
 | 
| 3bitrd.3 | 
 | 
| Ref | Expression | 
|---|---|
| 3bitrrd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3bitrd.3 | 
. 2
 | |
| 2 | 3bitrd.1 | 
. . 3
 | |
| 3 | 3bitrd.2 | 
. . 3
 | |
| 4 | 2, 3 | bitr2d 189 | 
. 2
 | 
| 5 | 1, 4 | bitr3d 190 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: srpospr 7850 divap0b 8710 divfl0 10386 cjreb 11031 eqg0el 13359 ghmeqker 13401 cnrest2 14472 2lgslem1a2 15328 | 
| Copyright terms: Public domain | W3C validator |