ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cjreb GIF version

Theorem cjreb 10910
Description: A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
cjreb (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴))

Proof of Theorem cjreb
StepHypRef Expression
1 recl 10897 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
21recnd 8017 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
3 ax-icn 7937 . . . . . 6 i ∈ ℂ
4 imcl 10898 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
54recnd 8017 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
6 mulcl 7969 . . . . . 6 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
73, 5, 6sylancr 414 . . . . 5 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
82, 7negsubd 8305 . . . 4 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + -(i · (ℑ‘𝐴))) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
9 mulneg2 8384 . . . . . 6 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴)))
103, 5, 9sylancr 414 . . . . 5 (𝐴 ∈ ℂ → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴)))
1110oveq2d 5913 . . . 4 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (i · -(ℑ‘𝐴))) = ((ℜ‘𝐴) + -(i · (ℑ‘𝐴))))
12 remim 10904 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
138, 11, 123eqtr4rd 2233 . . 3 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) + (i · -(ℑ‘𝐴))))
14 replim 10903 . . 3 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
1513, 14eqeq12d 2204 . 2 (𝐴 ∈ ℂ → ((∗‘𝐴) = 𝐴 ↔ ((ℜ‘𝐴) + (i · -(ℑ‘𝐴))) = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
165negcld 8286 . . . 4 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℂ)
17 mulcl 7969 . . . 4 ((i ∈ ℂ ∧ -(ℑ‘𝐴) ∈ ℂ) → (i · -(ℑ‘𝐴)) ∈ ℂ)
183, 16, 17sylancr 414 . . 3 (𝐴 ∈ ℂ → (i · -(ℑ‘𝐴)) ∈ ℂ)
192, 18, 7addcand 8172 . 2 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · -(ℑ‘𝐴))) = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) ↔ (i · -(ℑ‘𝐴)) = (i · (ℑ‘𝐴))))
20 eqcom 2191 . . . 4 (-(ℑ‘𝐴) = (ℑ‘𝐴) ↔ (ℑ‘𝐴) = -(ℑ‘𝐴))
215eqnegd 8721 . . . 4 (𝐴 ∈ ℂ → ((ℑ‘𝐴) = -(ℑ‘𝐴) ↔ (ℑ‘𝐴) = 0))
2220, 21bitrid 192 . . 3 (𝐴 ∈ ℂ → (-(ℑ‘𝐴) = (ℑ‘𝐴) ↔ (ℑ‘𝐴) = 0))
23 iap0 9173 . . . . . 6 i # 0
243, 23pm3.2i 272 . . . . 5 (i ∈ ℂ ∧ i # 0)
2524a1i 9 . . . 4 (𝐴 ∈ ℂ → (i ∈ ℂ ∧ i # 0))
26 mulcanap 8653 . . . 4 ((-(ℑ‘𝐴) ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ ∧ (i ∈ ℂ ∧ i # 0)) → ((i · -(ℑ‘𝐴)) = (i · (ℑ‘𝐴)) ↔ -(ℑ‘𝐴) = (ℑ‘𝐴)))
2716, 5, 25, 26syl3anc 1249 . . 3 (𝐴 ∈ ℂ → ((i · -(ℑ‘𝐴)) = (i · (ℑ‘𝐴)) ↔ -(ℑ‘𝐴) = (ℑ‘𝐴)))
28 reim0b 10906 . . 3 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
2922, 27, 283bitr4d 220 . 2 (𝐴 ∈ ℂ → ((i · -(ℑ‘𝐴)) = (i · (ℑ‘𝐴)) ↔ 𝐴 ∈ ℝ))
3015, 19, 293bitrrd 215 1 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160   class class class wbr 4018  cfv 5235  (class class class)co 5897  cc 7840  cr 7841  0cc0 7842  ici 7844   + caddc 7845   · cmul 7847  cmin 8159  -cneg 8160   # cap 8569  ccj 10883  cre 10884  cim 10885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-2 9009  df-cj 10886  df-re 10887  df-im 10888
This theorem is referenced by:  cjre  10926  cjmulrcl  10931  cjrebi  10962  cjrebd  10990
  Copyright terms: Public domain W3C validator