| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eltr4g | GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3eltr4g.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 3eltr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3eltr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eltr4g | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr4g.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | 3eltr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 3 | 3eltr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 4 | 2, 3 | eleq12i 2264 | . 2 ⊢ (𝐶 ∈ 𝐷 ↔ 𝐴 ∈ 𝐵) |
| 5 | 1, 4 | sylibr 134 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: riotacl2 5894 2strop1g 12826 |
| Copyright terms: Public domain | W3C validator |