Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eltr4g | GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
3eltr4g.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
3eltr4g.2 | ⊢ 𝐶 = 𝐴 |
3eltr4g.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eltr4g | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr4g.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | 3eltr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3eltr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | eleq12i 2239 | . 2 ⊢ (𝐶 ∈ 𝐷 ↔ 𝐴 ∈ 𝐵) |
5 | 1, 4 | sylibr 133 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1349 ∈ wcel 2142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1441 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-4 1504 ax-17 1520 ax-ial 1528 ax-ext 2153 |
This theorem depends on definitions: df-bi 116 df-cleq 2164 df-clel 2167 |
This theorem is referenced by: riotacl2 5826 2strop1g 12527 |
Copyright terms: Public domain | W3C validator |