ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eltr4g GIF version

Theorem 3eltr4g 2279
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr4g.1 (𝜑𝐴𝐵)
3eltr4g.2 𝐶 = 𝐴
3eltr4g.3 𝐷 = 𝐵
Assertion
Ref Expression
3eltr4g (𝜑𝐶𝐷)

Proof of Theorem 3eltr4g
StepHypRef Expression
1 3eltr4g.1 . 2 (𝜑𝐴𝐵)
2 3eltr4g.2 . . 3 𝐶 = 𝐴
3 3eltr4g.3 . . 3 𝐷 = 𝐵
42, 3eleq12i 2261 . 2 (𝐶𝐷𝐴𝐵)
51, 4sylibr 134 1 (𝜑𝐶𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-clel 2189
This theorem is referenced by:  riotacl2  5887  2strop1g  12741
  Copyright terms: Public domain W3C validator