Home | Intuitionistic Logic Explorer Theorem List (p. 23 of 140) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | eqtr4d 2201 | An equality transitivity equality deduction. (Contributed by NM, 18-Jul-1995.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) | ||
Theorem | 3eqtrd 2202 | A deduction from three chained equalities. (Contributed by NM, 29-Oct-1995.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → 𝐴 = 𝐷) | ||
Theorem | 3eqtrrd 2203 | A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → 𝐷 = 𝐴) | ||
Theorem | 3eqtr2d 2204 | A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → 𝐴 = 𝐷) | ||
Theorem | 3eqtr2rd 2205 | A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → 𝐷 = 𝐴) | ||
Theorem | 3eqtr3d 2206 | A deduction from three chained equalities. (Contributed by NM, 4-Aug-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐶 = 𝐷) | ||
Theorem | 3eqtr3rd 2207 | A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐷 = 𝐶) | ||
Theorem | 3eqtr4d 2208 | A deduction from three chained equalities. (Contributed by NM, 4-Aug-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐴) & ⊢ (𝜑 → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐶 = 𝐷) | ||
Theorem | 3eqtr4rd 2209 | A deduction from three chained equalities. (Contributed by NM, 21-Sep-1995.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐴) & ⊢ (𝜑 → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐷 = 𝐶) | ||
Theorem | syl5eq 2210 | An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) | ||
Theorem | eqtr2id 2211 | An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐶 = 𝐴) | ||
Theorem | eqtr3id 2212 | An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
⊢ 𝐵 = 𝐴 & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) | ||
Theorem | eqtr3di 2213 | An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐴 = 𝐶 ⇒ ⊢ (𝜑 → 𝐵 = 𝐶) | ||
Theorem | eqtrdi 2214 | An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐵 = 𝐶 ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) | ||
Theorem | eqtr2di 2215 | An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐵 = 𝐶 ⇒ ⊢ (𝜑 → 𝐶 = 𝐴) | ||
Theorem | eqtr4di 2216 | An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐶 = 𝐵 ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) | ||
Theorem | eqtr4id 2217 | An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) | ||
Theorem | sylan9eq 2218 | An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐵 = 𝐶) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | ||
Theorem | sylan9req 2219 | An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.) |
⊢ (𝜑 → 𝐵 = 𝐴) & ⊢ (𝜓 → 𝐵 = 𝐶) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | ||
Theorem | sylan9eqr 2220 | An equality transitivity deduction. (Contributed by NM, 8-May-1994.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐵 = 𝐶) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝐴 = 𝐶) | ||
Theorem | 3eqtr3g 2221 | A chained equality inference, useful for converting from definitions. (Contributed by NM, 15-Nov-1994.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ (𝜑 → 𝐶 = 𝐷) | ||
Theorem | 3eqtr3a 2222 | A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐶 = 𝐷) | ||
Theorem | 3eqtr4g 2223 | A chained equality inference, useful for converting to definitions. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ (𝜑 → 𝐶 = 𝐷) | ||
Theorem | 3eqtr4a 2224 | A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝜑 → 𝐶 = 𝐴) & ⊢ (𝜑 → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐶 = 𝐷) | ||
Theorem | eq2tri 2225 | A compound transitive inference for class equality. (Contributed by NM, 22-Jan-2004.) |
⊢ (𝐴 = 𝐶 → 𝐷 = 𝐹) & ⊢ (𝐵 = 𝐷 → 𝐶 = 𝐺) ⇒ ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐹) ↔ (𝐵 = 𝐷 ∧ 𝐴 = 𝐺)) | ||
Theorem | eleq1w 2226 | Weaker version of eleq1 2228 (but more general than elequ1 2140) not depending on ax-ext 2147 nor df-cleq 2158. (Contributed by BJ, 24-Jun-2019.) |
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | ||
Theorem | eleq2w 2227 | Weaker version of eleq2 2229 (but more general than elequ2 2141) not depending on ax-ext 2147 nor df-cleq 2158. (Contributed by BJ, 29-Sep-2019.) |
⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) | ||
Theorem | eleq1 2228 | Equality implies equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | ||
Theorem | eleq2 2229 | Equality implies equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝐴 = 𝐵 → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵)) | ||
Theorem | eleq12 2230 | Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) | ||
Theorem | eleq1i 2231 | Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) | ||
Theorem | eleq2i 2232 | Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵) | ||
Theorem | eleq12i 2233 | Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷) | ||
Theorem | eleq1d 2234 | Deduction from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | ||
Theorem | eleq2d 2235 | Deduction from equality to equivalence of membership. (Contributed by NM, 27-Dec-1993.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵)) | ||
Theorem | eleq12d 2236 | Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) | ||
Theorem | eleq1a 2237 | A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) | ||
Theorem | eqeltri 2238 | Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐵 ∈ 𝐶 ⇒ ⊢ 𝐴 ∈ 𝐶 | ||
Theorem | eqeltrri 2239 | Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐴 ∈ 𝐶 ⇒ ⊢ 𝐵 ∈ 𝐶 | ||
Theorem | eleqtri 2240 | Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ 𝐵 = 𝐶 ⇒ ⊢ 𝐴 ∈ 𝐶 | ||
Theorem | eleqtrri 2241 | Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ 𝐶 = 𝐵 ⇒ ⊢ 𝐴 ∈ 𝐶 | ||
Theorem | eqeltrd 2242 | Substitution of equal classes into membership relation, deduction form. (Contributed by Raph Levien, 10-Dec-2002.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eqeltrrd 2243 | Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝐶) | ||
Theorem | eleqtrd 2244 | Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eleqtrrd 2245 | Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | 3eltr3i 2246 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ 𝐶 ∈ 𝐷 | ||
Theorem | 3eltr4i 2247 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ 𝐶 ∈ 𝐷 | ||
Theorem | 3eltr3d 2248 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐷) | ||
Theorem | 3eltr4d 2249 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐴) & ⊢ (𝜑 → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐷) | ||
Theorem | 3eltr3g 2250 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐷) | ||
Theorem | 3eltr4g 2251 | Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝐶 = 𝐴 & ⊢ 𝐷 = 𝐵 ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐷) | ||
Theorem | eqeltrid 2252 | B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝜑 → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eqeltrrid 2253 | B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ 𝐵 = 𝐴 & ⊢ (𝜑 → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eleqtrid 2254 | B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eleqtrrid 2255 | B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ (𝜑 → 𝐶 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eqeltrdi 2256 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ 𝐵 ∈ 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eqeltrrdi 2257 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ (𝜑 → 𝐵 = 𝐴) & ⊢ 𝐵 ∈ 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eleqtrdi 2258 | A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝐵 = 𝐶 ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eleqtrrdi 2259 | A membership and equality inference. (Contributed by NM, 24-Apr-2005.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝐶 = 𝐵 ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐶) | ||
Theorem | eleq2s 2260 | Substitution of equal classes into a membership antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ (𝐴 ∈ 𝐵 → 𝜑) & ⊢ 𝐶 = 𝐵 ⇒ ⊢ (𝐴 ∈ 𝐶 → 𝜑) | ||
Theorem | eqneltrd 2261 | If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) | ||
Theorem | eqneltrrd 2262 | If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) | ||
Theorem | neleqtrd 2263 | If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | ||
Theorem | neleqtrrd 2264 | If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) | ||
Theorem | cleqh 2265* | Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. See also cleqf 2332. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) & ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) ⇒ ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | ||
Theorem | nelneq 2266 | A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997.) |
⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) | ||
Theorem | nelneq2 2267 | A way of showing two classes are not equal. (Contributed by NM, 12-Jan-2002.) |
⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 = 𝐶) | ||
Theorem | eqsb1lem 2268* | Lemma for eqsb1 2269. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
⊢ ([𝑦 / 𝑥]𝑥 = 𝐴 ↔ 𝑦 = 𝐴) | ||
Theorem | eqsb1 2269* | Substitution for the left-hand side in an equality. Class version of equsb3 1939. (Contributed by Rodolfo Medina, 28-Apr-2010.) |
⊢ ([𝑦 / 𝑥]𝑥 = 𝐴 ↔ 𝑦 = 𝐴) | ||
Theorem | clelsb1 2270* | Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2143). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | ||
Theorem | clelsb2 2271* | Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 2144). (Contributed by Jim Kingdon, 22-Nov-2018.) |
⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦) | ||
Theorem | hbxfreq 2272 | A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfrbi 1460 for equivalence version. (Contributed by NM, 21-Aug-2007.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) ⇒ ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | ||
Theorem | hblem 2273* | Change the free variable of a hypothesis builder. (Contributed by NM, 5-Aug-1993.) (Revised by Andrew Salmon, 11-Jul-2011.) |
⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) ⇒ ⊢ (𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴) | ||
Theorem | abeq2 2274* |
Equality of a class variable and a class abstraction (also called a
class builder). Theorem 5.1 of [Quine] p.
34. This theorem shows the
relationship between expressions with class abstractions and expressions
with class variables. Note that abbi 2279 and its relatives are among
those useful for converting theorems with class variables to equivalent
theorems with wff variables, by first substituting a class abstraction
for each class variable.
Class variables can always be eliminated from a theorem to result in an equivalent theorem with wff variables, and vice-versa. The idea is roughly as follows. To convert a theorem with a wff variable 𝜑 (that has a free variable 𝑥) to a theorem with a class variable 𝐴, we substitute 𝑥 ∈ 𝐴 for 𝜑 throughout and simplify, where 𝐴 is a new class variable not already in the wff. Conversely, to convert a theorem with a class variable 𝐴 to one with 𝜑, we substitute {𝑥 ∣ 𝜑} for 𝐴 throughout and simplify, where 𝑥 and 𝜑 are new set and wff variables not already in the wff. For more information on class variables, see Quine pp. 15-21 and/or Takeuti and Zaring pp. 10-13. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) | ||
Theorem | abeq1 2275* | Equality of a class variable and a class abstraction. (Contributed by NM, 20-Aug-1993.) |
⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ ∀𝑥(𝜑 ↔ 𝑥 ∈ 𝐴)) | ||
Theorem | abeq2i 2276 | Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.) |
⊢ 𝐴 = {𝑥 ∣ 𝜑} ⇒ ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | ||
Theorem | abeq1i 2277 | Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 31-Jul-1994.) |
⊢ {𝑥 ∣ 𝜑} = 𝐴 ⇒ ⊢ (𝜑 ↔ 𝑥 ∈ 𝐴) | ||
Theorem | abeq2d 2278 | Equality of a class variable and a class abstraction (deduction). (Contributed by NM, 16-Nov-1995.) |
⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) | ||
Theorem | abbi 2279 | Equivalent wff's correspond to equal class abstractions. (Contributed by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | ||
Theorem | abbi2i 2280* | Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 5-Aug-1993.) |
⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) ⇒ ⊢ 𝐴 = {𝑥 ∣ 𝜑} | ||
Theorem | abbii 2281 | Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} | ||
Theorem | abbid 2282 | Equivalent wff's yield equal class abstractions (deduction form). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) | ||
Theorem | abbidv 2283* | Equivalent wff's yield equal class abstractions (deduction form). (Contributed by NM, 10-Aug-1993.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) | ||
Theorem | abbi2dv 2284* | Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) ⇒ ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) | ||
Theorem | abbi1dv 2285* | Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) |
⊢ (𝜑 → (𝜓 ↔ 𝑥 ∈ 𝐴)) ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} = 𝐴) | ||
Theorem | abid2 2286* | A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 26-Dec-1993.) |
⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | ||
Theorem | sb8ab 2287 | Substitution of variable in class abstraction. (Contributed by Jim Kingdon, 27-Sep-2018.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ [𝑦 / 𝑥]𝜑} | ||
Theorem | cbvabw 2288* | Version of cbvab 2289 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.) Reduce axiom usage. (Revised by Gino Giotto, 25-Aug-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} | ||
Theorem | cbvab 2289 | Rule used to change bound variables, using implicit substitution. (Contributed by Andrew Salmon, 11-Jul-2011.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} | ||
Theorem | cbvabv 2290* | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-May-1999.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} | ||
Theorem | clelab 2291* | Membership of a class variable in a class abstraction. (Contributed by NM, 23-Dec-1993.) |
⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | ||
Theorem | clabel 2292* | Membership of a class abstraction in another class. (Contributed by NM, 17-Jan-2006.) |
⊢ ({𝑥 ∣ 𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) | ||
Theorem | sbab 2293* | The right-hand side of the second equality is a way of representing proper substitution of 𝑦 for 𝑥 into a class variable. (Contributed by NM, 14-Sep-2003.) |
⊢ (𝑥 = 𝑦 → 𝐴 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐴}) | ||
Syntax | wnfc 2294 | Extend wff definition to include the not-free predicate for classes. |
wff Ⅎ𝑥𝐴 | ||
Theorem | nfcjust 2295* | Justification theorem for df-nfc 2296. (Contributed by Mario Carneiro, 13-Oct-2016.) |
⊢ (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴) | ||
Definition | df-nfc 2296* | Define the not-free predicate for classes. This is read "𝑥 is not free in 𝐴". Not-free means that the value of 𝑥 cannot affect the value of 𝐴, e.g., any occurrence of 𝑥 in 𝐴 is effectively bound by a quantifier or something that expands to one (such as "there exists at most one"). It is defined in terms of the not-free predicate df-nf 1449 for wffs; see that definition for more information. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | ||
Theorem | nfci 2297* | Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 ⇒ ⊢ Ⅎ𝑥𝐴 | ||
Theorem | nfcii 2298* | Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) ⇒ ⊢ Ⅎ𝑥𝐴 | ||
Theorem | nfcr 2299* | Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) | ||
Theorem | nfcrii 2300* | Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |