HomeHome Intuitionistic Logic Explorer
Theorem List (p. 23 of 135)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2201-2300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremeleq1w 2201 Weaker version of eleq1 2203 (but more general than elequ1 1691) not depending on ax-ext 2122 nor df-cleq 2133. (Contributed by BJ, 24-Jun-2019.)
(𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
 
Theoremeleq2w 2202 Weaker version of eleq2 2204 (but more general than elequ2 1692) not depending on ax-ext 2122 nor df-cleq 2133. (Contributed by BJ, 29-Sep-2019.)
(𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
 
Theoremeleq1 2203 Equality implies equivalence of membership. (Contributed by NM, 5-Aug-1993.)
(𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
 
Theoremeleq2 2204 Equality implies equivalence of membership. (Contributed by NM, 5-Aug-1993.)
(𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
 
Theoremeleq12 2205 Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))
 
Theoremeleq1i 2206 Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.)
𝐴 = 𝐵       (𝐴𝐶𝐵𝐶)
 
Theoremeleq2i 2207 Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.)
𝐴 = 𝐵       (𝐶𝐴𝐶𝐵)
 
Theoremeleq12i 2208 Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴𝐶𝐵𝐷)
 
Theoremeleq1d 2209 Deduction from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴𝐶𝐵𝐶))
 
Theoremeleq2d 2210 Deduction from equality to equivalence of membership. (Contributed by NM, 27-Dec-1993.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐴𝐶𝐵))
 
Theoremeleq12d 2211 Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝐶𝐵𝐷))
 
Theoremeleq1a 2212 A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.)
(𝐴𝐵 → (𝐶 = 𝐴𝐶𝐵))
 
Theoremeqeltri 2213 Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
𝐴 = 𝐵    &   𝐵𝐶       𝐴𝐶
 
Theoremeqeltrri 2214 Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
𝐴 = 𝐵    &   𝐴𝐶       𝐵𝐶
 
Theoremeleqtri 2215 Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
𝐴𝐵    &   𝐵 = 𝐶       𝐴𝐶
 
Theoremeleqtrri 2216 Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
𝐴𝐵    &   𝐶 = 𝐵       𝐴𝐶
 
Theoremeqeltrd 2217 Substitution of equal classes into membership relation, deduction form. (Contributed by Raph Levien, 10-Dec-2002.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵𝐶)       (𝜑𝐴𝐶)
 
Theoremeqeltrrd 2218 Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐴𝐶)       (𝜑𝐵𝐶)
 
Theoremeleqtrd 2219 Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.)
(𝜑𝐴𝐵)    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴𝐶)
 
Theoremeleqtrrd 2220 Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.)
(𝜑𝐴𝐵)    &   (𝜑𝐶 = 𝐵)       (𝜑𝐴𝐶)
 
Theorem3eltr3i 2221 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
𝐴𝐵    &   𝐴 = 𝐶    &   𝐵 = 𝐷       𝐶𝐷
 
Theorem3eltr4i 2222 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
𝐴𝐵    &   𝐶 = 𝐴    &   𝐷 = 𝐵       𝐶𝐷
 
Theorem3eltr3d 2223 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝜑𝐴𝐵)    &   (𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑𝐶𝐷)
 
Theorem3eltr4d 2224 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝜑𝐴𝐵)    &   (𝜑𝐶 = 𝐴)    &   (𝜑𝐷 = 𝐵)       (𝜑𝐶𝐷)
 
Theorem3eltr3g 2225 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝜑𝐴𝐵)    &   𝐴 = 𝐶    &   𝐵 = 𝐷       (𝜑𝐶𝐷)
 
Theorem3eltr4g 2226 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝜑𝐴𝐵)    &   𝐶 = 𝐴    &   𝐷 = 𝐵       (𝜑𝐶𝐷)
 
Theoremeqeltrid 2227 B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
𝐴 = 𝐵    &   (𝜑𝐵𝐶)       (𝜑𝐴𝐶)
 
Theoremeqeltrrid 2228 B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
𝐵 = 𝐴    &   (𝜑𝐵𝐶)       (𝜑𝐴𝐶)
 
Theoremeleqtrid 2229 B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
𝐴𝐵    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴𝐶)
 
Theoremeleqtrrid 2230 B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
𝐴𝐵    &   (𝜑𝐶 = 𝐵)       (𝜑𝐴𝐶)
 
Theoremeqeltrdi 2231 A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
(𝜑𝐴 = 𝐵)    &   𝐵𝐶       (𝜑𝐴𝐶)
 
Theoremeqeltrrdi 2232 A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
(𝜑𝐵 = 𝐴)    &   𝐵𝐶       (𝜑𝐴𝐶)
 
Theoremeleqtrdi 2233 A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
(𝜑𝐴𝐵)    &   𝐵 = 𝐶       (𝜑𝐴𝐶)
 
Theoremeleqtrrdi 2234 A membership and equality inference. (Contributed by NM, 24-Apr-2005.)
(𝜑𝐴𝐵)    &   𝐶 = 𝐵       (𝜑𝐴𝐶)
 
Theoremeleq2s 2235 Substitution of equal classes into a membership antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
(𝐴𝐵𝜑)    &   𝐶 = 𝐵       (𝐴𝐶𝜑)
 
Theoremeqneltrd 2236 If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → ¬ 𝐵𝐶)       (𝜑 → ¬ 𝐴𝐶)
 
Theoremeqneltrrd 2237 If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → ¬ 𝐴𝐶)       (𝜑 → ¬ 𝐵𝐶)
 
Theoremneleqtrd 2238 If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.)
(𝜑 → ¬ 𝐶𝐴)    &   (𝜑𝐴 = 𝐵)       (𝜑 → ¬ 𝐶𝐵)
 
Theoremneleqtrrd 2239 If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.)
(𝜑 → ¬ 𝐶𝐵)    &   (𝜑𝐴 = 𝐵)       (𝜑 → ¬ 𝐶𝐴)
 
Theoremcleqh 2240* Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. See also cleqf 2306. (Contributed by NM, 5-Aug-1993.)
(𝑦𝐴 → ∀𝑥 𝑦𝐴)    &   (𝑦𝐵 → ∀𝑥 𝑦𝐵)       (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
 
Theoremnelneq 2241 A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997.)
((𝐴𝐶 ∧ ¬ 𝐵𝐶) → ¬ 𝐴 = 𝐵)
 
Theoremnelneq2 2242 A way of showing two classes are not equal. (Contributed by NM, 12-Jan-2002.)
((𝐴𝐵 ∧ ¬ 𝐴𝐶) → ¬ 𝐵 = 𝐶)
 
Theoremeqsb3lem 2243* Lemma for eqsb3 2244. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
([𝑦 / 𝑥]𝑥 = 𝐴𝑦 = 𝐴)
 
Theoremeqsb3 2244* Substitution applied to an atomic wff (class version of equsb3 1925). (Contributed by Rodolfo Medina, 28-Apr-2010.)
([𝑦 / 𝑥]𝑥 = 𝐴𝑦 = 𝐴)
 
Theoremclelsb3 2245* Substitution applied to an atomic wff (class version of elsb3 1952). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
 
Theoremclelsb4 2246* Substitution applied to an atomic wff (class version of elsb4 1953). (Contributed by Jim Kingdon, 22-Nov-2018.)
([𝑦 / 𝑥]𝐴𝑥𝐴𝑦)
 
Theoremhbxfreq 2247 A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfrbi 1449 for equivalence version. (Contributed by NM, 21-Aug-2007.)
𝐴 = 𝐵    &   (𝑦𝐵 → ∀𝑥 𝑦𝐵)       (𝑦𝐴 → ∀𝑥 𝑦𝐴)
 
Theoremhblem 2248* Change the free variable of a hypothesis builder. (Contributed by NM, 5-Aug-1993.) (Revised by Andrew Salmon, 11-Jul-2011.)
(𝑦𝐴 → ∀𝑥 𝑦𝐴)       (𝑧𝐴 → ∀𝑥 𝑧𝐴)
 
Theoremabeq2 2249* Equality of a class variable and a class abstraction (also called a class builder). Theorem 5.1 of [Quine] p. 34. This theorem shows the relationship between expressions with class abstractions and expressions with class variables. Note that abbi 2254 and its relatives are among those useful for converting theorems with class variables to equivalent theorems with wff variables, by first substituting a class abstraction for each class variable.

Class variables can always be eliminated from a theorem to result in an equivalent theorem with wff variables, and vice-versa. The idea is roughly as follows. To convert a theorem with a wff variable 𝜑 (that has a free variable 𝑥) to a theorem with a class variable 𝐴, we substitute 𝑥𝐴 for 𝜑 throughout and simplify, where 𝐴 is a new class variable not already in the wff. Conversely, to convert a theorem with a class variable 𝐴 to one with 𝜑, we substitute {𝑥𝜑} for 𝐴 throughout and simplify, where 𝑥 and 𝜑 are new set and wff variables not already in the wff. For more information on class variables, see Quine pp. 15-21 and/or Takeuti and Zaring pp. 10-13. (Contributed by NM, 5-Aug-1993.)

(𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
 
Theoremabeq1 2250* Equality of a class variable and a class abstraction. (Contributed by NM, 20-Aug-1993.)
({𝑥𝜑} = 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
 
Theoremabeq2i 2251 Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.)
𝐴 = {𝑥𝜑}       (𝑥𝐴𝜑)
 
Theoremabeq1i 2252 Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 31-Jul-1994.)
{𝑥𝜑} = 𝐴       (𝜑𝑥𝐴)
 
Theoremabeq2d 2253 Equality of a class variable and a class abstraction (deduction). (Contributed by NM, 16-Nov-1995.)
(𝜑𝐴 = {𝑥𝜓})       (𝜑 → (𝑥𝐴𝜓))
 
Theoremabbi 2254 Equivalent wff's correspond to equal class abstractions. (Contributed by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.)
(∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})
 
Theoremabbi2i 2255* Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 5-Aug-1993.)
(𝑥𝐴𝜑)       𝐴 = {𝑥𝜑}
 
Theoremabbii 2256 Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 5-Aug-1993.)
(𝜑𝜓)       {𝑥𝜑} = {𝑥𝜓}
 
Theoremabbid 2257 Equivalent wff's yield equal class abstractions (deduction form). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → {𝑥𝜓} = {𝑥𝜒})
 
Theoremabbidv 2258* Equivalent wff's yield equal class abstractions (deduction form). (Contributed by NM, 10-Aug-1993.)
(𝜑 → (𝜓𝜒))       (𝜑 → {𝑥𝜓} = {𝑥𝜒})
 
Theoremabbi2dv 2259* Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.)
(𝜑 → (𝑥𝐴𝜓))       (𝜑𝐴 = {𝑥𝜓})
 
Theoremabbi1dv 2260* Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.)
(𝜑 → (𝜓𝑥𝐴))       (𝜑 → {𝑥𝜓} = 𝐴)
 
Theoremabid2 2261* A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 26-Dec-1993.)
{𝑥𝑥𝐴} = 𝐴
 
Theoremsb8ab 2262 Substitution of variable in class abstraction. (Contributed by Jim Kingdon, 27-Sep-2018.)
𝑦𝜑       {𝑥𝜑} = {𝑦 ∣ [𝑦 / 𝑥]𝜑}
 
Theoremcbvabw 2263* Version of cbvab 2264 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       {𝑥𝜑} = {𝑦𝜓}
 
Theoremcbvab 2264 Rule used to change bound variables, using implicit substitution. (Contributed by Andrew Salmon, 11-Jul-2011.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       {𝑥𝜑} = {𝑦𝜓}
 
Theoremcbvabv 2265* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-May-1999.)
(𝑥 = 𝑦 → (𝜑𝜓))       {𝑥𝜑} = {𝑦𝜓}
 
Theoremclelab 2266* Membership of a class variable in a class abstraction. (Contributed by NM, 23-Dec-1993.)
(𝐴 ∈ {𝑥𝜑} ↔ ∃𝑥(𝑥 = 𝐴𝜑))
 
Theoremclabel 2267* Membership of a class abstraction in another class. (Contributed by NM, 17-Jan-2006.)
({𝑥𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦𝐴 ∧ ∀𝑥(𝑥𝑦𝜑)))
 
Theoremsbab 2268* The right-hand side of the second equality is a way of representing proper substitution of 𝑦 for 𝑥 into a class variable. (Contributed by NM, 14-Sep-2003.)
(𝑥 = 𝑦𝐴 = {𝑧 ∣ [𝑦 / 𝑥]𝑧𝐴})
 
2.1.3  Class form not-free predicate
 
Syntaxwnfc 2269 Extend wff definition to include the not-free predicate for classes.
wff 𝑥𝐴
 
Theoremnfcjust 2270* Justification theorem for df-nfc 2271. (Contributed by Mario Carneiro, 13-Oct-2016.)
(∀𝑦𝑥 𝑦𝐴 ↔ ∀𝑧𝑥 𝑧𝐴)
 
Definitiondf-nfc 2271* Define the not-free predicate for classes. This is read "𝑥 is not free in 𝐴". Not-free means that the value of 𝑥 cannot affect the value of 𝐴, e.g., any occurrence of 𝑥 in 𝐴 is effectively bound by a quantifier or something that expands to one (such as "there exists at most one"). It is defined in terms of the not-free predicate df-nf 1438 for wffs; see that definition for more information. (Contributed by Mario Carneiro, 11-Aug-2016.)
(𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
 
Theoremnfci 2272* Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥 𝑦𝐴       𝑥𝐴
 
Theoremnfcii 2273* Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
(𝑦𝐴 → ∀𝑥 𝑦𝐴)       𝑥𝐴
 
Theoremnfcr 2274* Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
(𝑥𝐴 → Ⅎ𝑥 𝑦𝐴)
 
Theoremnfcrii 2275* Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝐴       (𝑦𝐴 → ∀𝑥 𝑦𝐴)
 
Theoremnfcri 2276* Consequence of the not-free predicate. (Note that unlike nfcr 2274, this does not require 𝑦 and 𝐴 to be disjoint.) (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝐴       𝑥 𝑦𝐴
 
Theoremnfcd 2277* Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑥 𝑦𝐴)       (𝜑𝑥𝐴)
 
Theoremnfceqi 2278 Equality theorem for class not-free. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝐴 = 𝐵       (𝑥𝐴𝑥𝐵)
 
Theoremnfcxfr 2279 A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝐴 = 𝐵    &   𝑥𝐵       𝑥𝐴
 
Theoremnfcxfrd 2280 A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝐴 = 𝐵    &   (𝜑𝑥𝐵)       (𝜑𝑥𝐴)
 
Theoremnfceqdf 2281 An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016.)
𝑥𝜑    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝑥𝐴𝑥𝐵))
 
Theoremnfcv 2282* If 𝑥 is disjoint from 𝐴, then 𝑥 is not free in 𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝐴
 
Theoremnfcvd 2283* If 𝑥 is disjoint from 𝐴, then 𝑥 is not free in 𝐴. (Contributed by Mario Carneiro, 7-Oct-2016.)
(𝜑𝑥𝐴)
 
Theoremnfab1 2284 Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥{𝑥𝜑}
 
Theoremnfnfc1 2285 𝑥 is bound in 𝑥𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝑥𝐴
 
Theoremclelsb3f 2286 Substitution applied to an atomic wff (class version of elsb3 1952). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Revised by Thierry Arnoux, 13-Mar-2017.)
𝑥𝐴       ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
 
Theoremnfab 2287 Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝜑       𝑥{𝑦𝜑}
 
Theoremnfaba1 2288 Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 14-Oct-2016.)
𝑥{𝑦 ∣ ∀𝑥𝜑}
 
Theoremnfnfc 2289 Hypothesis builder for 𝑦𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝐴       𝑥𝑦𝐴
 
Theoremnfeq 2290 Hypothesis builder for equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝐴    &   𝑥𝐵       𝑥 𝐴 = 𝐵
 
Theoremnfel 2291 Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝐴    &   𝑥𝐵       𝑥 𝐴𝐵
 
Theoremnfeq1 2292* Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
𝑥𝐴       𝑥 𝐴 = 𝐵
 
Theoremnfel1 2293* Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
𝑥𝐴       𝑥 𝐴𝐵
 
Theoremnfeq2 2294* Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
𝑥𝐵       𝑥 𝐴 = 𝐵
 
Theoremnfel2 2295* Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
𝑥𝐵       𝑥 𝐴𝐵
 
Theoremnfcrd 2296* Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
(𝜑𝑥𝐴)       (𝜑 → Ⅎ𝑥 𝑦𝐴)
 
Theoremnfeqd 2297 Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.)
(𝜑𝑥𝐴)    &   (𝜑𝑥𝐵)       (𝜑 → Ⅎ𝑥 𝐴 = 𝐵)
 
Theoremnfeld 2298 Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.)
(𝜑𝑥𝐴)    &   (𝜑𝑥𝐵)       (𝜑 → Ⅎ𝑥 𝐴𝐵)
 
Theoremdrnfc1 2299 Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 8-Oct-2016.)
(∀𝑥 𝑥 = 𝑦𝐴 = 𝐵)       (∀𝑥 𝑥 = 𝑦 → (𝑥𝐴𝑦𝐵))
 
Theoremdrnfc2 2300 Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 8-Oct-2016.)
(∀𝑥 𝑥 = 𝑦𝐴 = 𝐵)       (∀𝑥 𝑥 = 𝑦 → (𝑧𝐴𝑧𝐵))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13441
  Copyright terms: Public domain < Previous  Next >