HomeHome Intuitionistic Logic Explorer
Theorem List (p. 23 of 161)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2201-2300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcvjust 2201* Every set is a class. Proposition 4.9 of [TakeutiZaring] p. 13. This theorem shows that a setvar variable can be expressed as a class abstraction. This provides a motivation for the class syntax construction cv 1372, which allows us to substitute a setvar variable for a class variable. See also cab 2192 and df-clab 2193. Note that this is not a rigorous justification, because cv 1372 is used as part of the proof of this theorem, but a careful argument can be made outside of the formalism of Metamath, for example as is done in Chapter 4 of Takeuti and Zaring. See also the discussion under the definition of class in [Jech] p. 4 showing that "Every set can be considered to be a class." (Contributed by NM, 7-Nov-2006.)
𝑥 = {𝑦𝑦𝑥}
 
Definitiondf-clel 2202* Define the membership connective between classes. Theorem 6.3 of [Quine] p. 41, or Proposition 4.6 of [TakeutiZaring] p. 13, which we adopt as a definition. See these references for its metalogical justification. Note that like df-cleq 2199 it extends or "overloads" the use of the existing membership symbol, but unlike df-cleq 2199 it does not strengthen the set of valid wffs of logic when the class variables are replaced with setvar variables (see cleljust 2183), so we don't include any set theory axiom as a hypothesis. See also comments about the syntax under df-clab 2193.

This is called the "axiom of membership" by [Levy] p. 338, who treats the theory of classes as an extralogical extension to our logic and set theory axioms.

For a general discussion of the theory of classes, see https://us.metamath.org/mpeuni/mmset.html#class 2193. (Contributed by NM, 5-Aug-1993.)

(𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
 
Theoremeqriv 2203* Infer equality of classes from equivalence of membership. (Contributed by NM, 5-Aug-1993.)
(𝑥𝐴𝑥𝐵)       𝐴 = 𝐵
 
Theoremeqrdv 2204* Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996.)
(𝜑 → (𝑥𝐴𝑥𝐵))       (𝜑𝐴 = 𝐵)
 
Theoremeqrdav 2205* Deduce equality of classes from an equivalence of membership that depends on the membership variable. (Contributed by NM, 7-Nov-2008.)
((𝜑𝑥𝐴) → 𝑥𝐶)    &   ((𝜑𝑥𝐵) → 𝑥𝐶)    &   ((𝜑𝑥𝐶) → (𝑥𝐴𝑥𝐵))       (𝜑𝐴 = 𝐵)
 
Theoremeqid 2206 Law of identity (reflexivity of class equality). Theorem 6.4 of [Quine] p. 41.

This law is thought to have originated with Aristotle (Metaphysics, Zeta, 17, 1041 a, 10-20). (Thanks to Stefan Allan and BJ for this information.) (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 14-Oct-2017.)

𝐴 = 𝐴
 
Theoremeqidd 2207 Class identity law with antecedent. (Contributed by NM, 21-Aug-2008.)
(𝜑𝐴 = 𝐴)
 
Theoremeqcom 2208 Commutative law for class equality. Theorem 6.5 of [Quine] p. 41. (Contributed by NM, 5-Aug-1993.)
(𝐴 = 𝐵𝐵 = 𝐴)
 
Theoremeqcoms 2209 Inference applying commutative law for class equality to an antecedent. (Contributed by NM, 5-Aug-1993.)
(𝐴 = 𝐵𝜑)       (𝐵 = 𝐴𝜑)
 
Theoremeqcomi 2210 Inference from commutative law for class equality. (Contributed by NM, 5-Aug-1993.)
𝐴 = 𝐵       𝐵 = 𝐴
 
Theoremneqcomd 2211 Commute an inequality. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝜑 → ¬ 𝐴 = 𝐵)       (𝜑 → ¬ 𝐵 = 𝐴)
 
Theoremeqcomd 2212 Deduction from commutative law for class equality. (Contributed by NM, 15-Aug-1994.)
(𝜑𝐴 = 𝐵)       (𝜑𝐵 = 𝐴)
 
Theoremeqeq1 2213 Equality implies equivalence of equalities. (Contributed by NM, 5-Aug-1993.)
(𝐴 = 𝐵 → (𝐴 = 𝐶𝐵 = 𝐶))
 
Theoremeqeq1i 2214 Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.)
𝐴 = 𝐵       (𝐴 = 𝐶𝐵 = 𝐶)
 
Theoremeqeq1d 2215 Deduction from equality to equivalence of equalities. (Contributed by NM, 27-Dec-1993.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴 = 𝐶𝐵 = 𝐶))
 
Theoremeqeq2 2216 Equality implies equivalence of equalities. (Contributed by NM, 5-Aug-1993.)
(𝐴 = 𝐵 → (𝐶 = 𝐴𝐶 = 𝐵))
 
Theoremeqeq2i 2217 Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.)
𝐴 = 𝐵       (𝐶 = 𝐴𝐶 = 𝐵)
 
Theoremeqeq2d 2218 Deduction from equality to equivalence of equalities. (Contributed by NM, 27-Dec-1993.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶 = 𝐴𝐶 = 𝐵))
 
Theoremeqeq12 2219 Equality relationship among 4 classes. (Contributed by NM, 3-Aug-1994.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))
 
Theoremeqeq12i 2220 A useful inference for substituting definitions into an equality. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴 = 𝐶𝐵 = 𝐷)
 
Theoremeqeq12d 2221 A useful inference for substituting definitions into an equality. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))
 
Theoremeqeqan12d 2222 A useful inference for substituting definitions into an equality. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐶 = 𝐷)       ((𝜑𝜓) → (𝐴 = 𝐶𝐵 = 𝐷))
 
Theoremeqeqan12rd 2223 A useful inference for substituting definitions into an equality. (Contributed by NM, 9-Aug-1994.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐶 = 𝐷)       ((𝜓𝜑) → (𝐴 = 𝐶𝐵 = 𝐷))
 
Theoremeqtr 2224 Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.)
((𝐴 = 𝐵𝐵 = 𝐶) → 𝐴 = 𝐶)
 
Theoremeqtr2 2225 A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.)
((𝐴 = 𝐵𝐴 = 𝐶) → 𝐵 = 𝐶)
 
Theoremeqtr3 2226 A transitive law for class equality. (Contributed by NM, 20-May-2005.)
((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)
 
Theoremeqtri 2227 An equality transitivity inference. (Contributed by NM, 5-Aug-1993.)
𝐴 = 𝐵    &   𝐵 = 𝐶       𝐴 = 𝐶
 
Theoremeqtr2i 2228 An equality transitivity inference. (Contributed by NM, 21-Feb-1995.)
𝐴 = 𝐵    &   𝐵 = 𝐶       𝐶 = 𝐴
 
Theoremeqtr3i 2229 An equality transitivity inference. (Contributed by NM, 6-May-1994.)
𝐴 = 𝐵    &   𝐴 = 𝐶       𝐵 = 𝐶
 
Theoremeqtr4i 2230 An equality transitivity inference. (Contributed by NM, 5-Aug-1993.)
𝐴 = 𝐵    &   𝐶 = 𝐵       𝐴 = 𝐶
 
Theorem3eqtri 2231 An inference from three chained equalities. (Contributed by NM, 29-Aug-1993.)
𝐴 = 𝐵    &   𝐵 = 𝐶    &   𝐶 = 𝐷       𝐴 = 𝐷
 
Theorem3eqtrri 2232 An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   𝐵 = 𝐶    &   𝐶 = 𝐷       𝐷 = 𝐴
 
Theorem3eqtr2i 2233 An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.)
𝐴 = 𝐵    &   𝐶 = 𝐵    &   𝐶 = 𝐷       𝐴 = 𝐷
 
Theorem3eqtr2ri 2234 An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   𝐶 = 𝐵    &   𝐶 = 𝐷       𝐷 = 𝐴
 
Theorem3eqtr3i 2235 An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   𝐴 = 𝐶    &   𝐵 = 𝐷       𝐶 = 𝐷
 
Theorem3eqtr3ri 2236 An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.)
𝐴 = 𝐵    &   𝐴 = 𝐶    &   𝐵 = 𝐷       𝐷 = 𝐶
 
Theorem3eqtr4i 2237 An inference from three chained equalities. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   𝐶 = 𝐴    &   𝐷 = 𝐵       𝐶 = 𝐷
 
Theorem3eqtr4ri 2238 An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   𝐶 = 𝐴    &   𝐷 = 𝐵       𝐷 = 𝐶
 
Theoremeqtrd 2239 An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴 = 𝐶)
 
Theoremeqtr2d 2240 An equality transitivity deduction. (Contributed by NM, 18-Oct-1999.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵 = 𝐶)       (𝜑𝐶 = 𝐴)
 
Theoremeqtr3d 2241 An equality transitivity equality deduction. (Contributed by NM, 18-Jul-1995.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐴 = 𝐶)       (𝜑𝐵 = 𝐶)
 
Theoremeqtr4d 2242 An equality transitivity equality deduction. (Contributed by NM, 18-Jul-1995.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐵)       (𝜑𝐴 = 𝐶)
 
Theorem3eqtrd 2243 A deduction from three chained equalities. (Contributed by NM, 29-Oct-1995.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵 = 𝐶)    &   (𝜑𝐶 = 𝐷)       (𝜑𝐴 = 𝐷)
 
Theorem3eqtrrd 2244 A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵 = 𝐶)    &   (𝜑𝐶 = 𝐷)       (𝜑𝐷 = 𝐴)
 
Theorem3eqtr2d 2245 A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑𝐴 = 𝐷)
 
Theorem3eqtr2rd 2246 A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑𝐷 = 𝐴)
 
Theorem3eqtr3d 2247 A deduction from three chained equalities. (Contributed by NM, 4-Aug-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑𝐶 = 𝐷)
 
Theorem3eqtr3rd 2248 A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑𝐷 = 𝐶)
 
Theorem3eqtr4d 2249 A deduction from three chained equalities. (Contributed by NM, 4-Aug-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐴)    &   (𝜑𝐷 = 𝐵)       (𝜑𝐶 = 𝐷)
 
Theorem3eqtr4rd 2250 A deduction from three chained equalities. (Contributed by NM, 21-Sep-1995.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐴)    &   (𝜑𝐷 = 𝐵)       (𝜑𝐷 = 𝐶)
 
Theoremeqtrid 2251 An equality transitivity deduction. (Contributed by NM, 21-Jun-1993.)
𝐴 = 𝐵    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴 = 𝐶)
 
Theoremeqtr2id 2252 An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
𝐴 = 𝐵    &   (𝜑𝐵 = 𝐶)       (𝜑𝐶 = 𝐴)
 
Theoremeqtr3id 2253 An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.)
𝐵 = 𝐴    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴 = 𝐶)
 
Theoremeqtr3di 2254 An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
(𝜑𝐴 = 𝐵)    &   𝐴 = 𝐶       (𝜑𝐵 = 𝐶)
 
Theoremeqtrdi 2255 An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.)
(𝜑𝐴 = 𝐵)    &   𝐵 = 𝐶       (𝜑𝐴 = 𝐶)
 
Theoremeqtr2di 2256 An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
(𝜑𝐴 = 𝐵)    &   𝐵 = 𝐶       (𝜑𝐶 = 𝐴)
 
Theoremeqtr4di 2257 An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.)
(𝜑𝐴 = 𝐵)    &   𝐶 = 𝐵       (𝜑𝐴 = 𝐶)
 
Theoremeqtr4id 2258 An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
𝐴 = 𝐵    &   (𝜑𝐶 = 𝐵)       (𝜑𝐴 = 𝐶)
 
Theoremsylan9eq 2259 An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐵 = 𝐶)       ((𝜑𝜓) → 𝐴 = 𝐶)
 
Theoremsylan9req 2260 An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.)
(𝜑𝐵 = 𝐴)    &   (𝜓𝐵 = 𝐶)       ((𝜑𝜓) → 𝐴 = 𝐶)
 
Theoremsylan9eqr 2261 An equality transitivity deduction. (Contributed by NM, 8-May-1994.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐵 = 𝐶)       ((𝜓𝜑) → 𝐴 = 𝐶)
 
Theorem3eqtr3g 2262 A chained equality inference, useful for converting from definitions. (Contributed by NM, 15-Nov-1994.)
(𝜑𝐴 = 𝐵)    &   𝐴 = 𝐶    &   𝐵 = 𝐷       (𝜑𝐶 = 𝐷)
 
Theorem3eqtr3a 2263 A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.)
𝐴 = 𝐵    &   (𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑𝐶 = 𝐷)
 
Theorem3eqtr4g 2264 A chained equality inference, useful for converting to definitions. (Contributed by NM, 5-Aug-1993.)
(𝜑𝐴 = 𝐵)    &   𝐶 = 𝐴    &   𝐷 = 𝐵       (𝜑𝐶 = 𝐷)
 
Theorem3eqtr4a 2265 A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   (𝜑𝐶 = 𝐴)    &   (𝜑𝐷 = 𝐵)       (𝜑𝐶 = 𝐷)
 
Theoremeq2tri 2266 A compound transitive inference for class equality. (Contributed by NM, 22-Jan-2004.)
(𝐴 = 𝐶𝐷 = 𝐹)    &   (𝐵 = 𝐷𝐶 = 𝐺)       ((𝐴 = 𝐶𝐵 = 𝐹) ↔ (𝐵 = 𝐷𝐴 = 𝐺))
 
Theoremeleq1w 2267 Weaker version of eleq1 2269 (but more general than elequ1 2181) not depending on ax-ext 2188 nor df-cleq 2199. (Contributed by BJ, 24-Jun-2019.)
(𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
 
Theoremeleq2w 2268 Weaker version of eleq2 2270 (but more general than elequ2 2182) not depending on ax-ext 2188 nor df-cleq 2199. (Contributed by BJ, 29-Sep-2019.)
(𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
 
Theoremeleq1 2269 Equality implies equivalence of membership. (Contributed by NM, 5-Aug-1993.)
(𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
 
Theoremeleq2 2270 Equality implies equivalence of membership. (Contributed by NM, 5-Aug-1993.)
(𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
 
Theoremeleq12 2271 Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))
 
Theoremeleq1i 2272 Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.)
𝐴 = 𝐵       (𝐴𝐶𝐵𝐶)
 
Theoremeleq2i 2273 Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.)
𝐴 = 𝐵       (𝐶𝐴𝐶𝐵)
 
Theoremeleq12i 2274 Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴𝐶𝐵𝐷)
 
Theoremeleq1d 2275 Deduction from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴𝐶𝐵𝐶))
 
Theoremeleq2d 2276 Deduction from equality to equivalence of membership. (Contributed by NM, 27-Dec-1993.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐴𝐶𝐵))
 
Theoremeleq12d 2277 Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝐶𝐵𝐷))
 
Theoremeleq1a 2278 A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.)
(𝐴𝐵 → (𝐶 = 𝐴𝐶𝐵))
 
Theoremeqeltri 2279 Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
𝐴 = 𝐵    &   𝐵𝐶       𝐴𝐶
 
Theoremeqeltrri 2280 Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
𝐴 = 𝐵    &   𝐴𝐶       𝐵𝐶
 
Theoremeleqtri 2281 Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
𝐴𝐵    &   𝐵 = 𝐶       𝐴𝐶
 
Theoremeleqtrri 2282 Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
𝐴𝐵    &   𝐶 = 𝐵       𝐴𝐶
 
Theoremeqeltrd 2283 Substitution of equal classes into membership relation, deduction form. (Contributed by Raph Levien, 10-Dec-2002.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵𝐶)       (𝜑𝐴𝐶)
 
Theoremeqeltrrd 2284 Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐴𝐶)       (𝜑𝐵𝐶)
 
Theoremeleqtrd 2285 Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.)
(𝜑𝐴𝐵)    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴𝐶)
 
Theoremeleqtrrd 2286 Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.)
(𝜑𝐴𝐵)    &   (𝜑𝐶 = 𝐵)       (𝜑𝐴𝐶)
 
Theorem3eltr3i 2287 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
𝐴𝐵    &   𝐴 = 𝐶    &   𝐵 = 𝐷       𝐶𝐷
 
Theorem3eltr4i 2288 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
𝐴𝐵    &   𝐶 = 𝐴    &   𝐷 = 𝐵       𝐶𝐷
 
Theorem3eltr3d 2289 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝜑𝐴𝐵)    &   (𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑𝐶𝐷)
 
Theorem3eltr4d 2290 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝜑𝐴𝐵)    &   (𝜑𝐶 = 𝐴)    &   (𝜑𝐷 = 𝐵)       (𝜑𝐶𝐷)
 
Theorem3eltr3g 2291 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝜑𝐴𝐵)    &   𝐴 = 𝐶    &   𝐵 = 𝐷       (𝜑𝐶𝐷)
 
Theorem3eltr4g 2292 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝜑𝐴𝐵)    &   𝐶 = 𝐴    &   𝐷 = 𝐵       (𝜑𝐶𝐷)
 
Theoremeqeltrid 2293 B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
𝐴 = 𝐵    &   (𝜑𝐵𝐶)       (𝜑𝐴𝐶)
 
Theoremeqeltrrid 2294 B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
𝐵 = 𝐴    &   (𝜑𝐵𝐶)       (𝜑𝐴𝐶)
 
Theoremeleqtrid 2295 B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
𝐴𝐵    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴𝐶)
 
Theoremeleqtrrid 2296 B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
𝐴𝐵    &   (𝜑𝐶 = 𝐵)       (𝜑𝐴𝐶)
 
Theoremeqeltrdi 2297 A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
(𝜑𝐴 = 𝐵)    &   𝐵𝐶       (𝜑𝐴𝐶)
 
Theoremeqeltrrdi 2298 A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
(𝜑𝐵 = 𝐴)    &   𝐵𝐶       (𝜑𝐴𝐶)
 
Theoremeleqtrdi 2299 A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
(𝜑𝐴𝐵)    &   𝐵 = 𝐶       (𝜑𝐴𝐶)
 
Theoremeleqtrrdi 2300 A membership and equality inference. (Contributed by NM, 24-Apr-2005.)
(𝜑𝐴𝐵)    &   𝐶 = 𝐵       (𝜑𝐴𝐶)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16097
  Copyright terms: Public domain < Previous  Next >