HomeHome Intuitionistic Logic Explorer
Theorem List (p. 23 of 144)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2201-2300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem3eqtrri 2201 An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   𝐵 = 𝐶    &   𝐶 = 𝐷       𝐷 = 𝐴
 
Theorem3eqtr2i 2202 An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.)
𝐴 = 𝐵    &   𝐶 = 𝐵    &   𝐶 = 𝐷       𝐴 = 𝐷
 
Theorem3eqtr2ri 2203 An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   𝐶 = 𝐵    &   𝐶 = 𝐷       𝐷 = 𝐴
 
Theorem3eqtr3i 2204 An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   𝐴 = 𝐶    &   𝐵 = 𝐷       𝐶 = 𝐷
 
Theorem3eqtr3ri 2205 An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.)
𝐴 = 𝐵    &   𝐴 = 𝐶    &   𝐵 = 𝐷       𝐷 = 𝐶
 
Theorem3eqtr4i 2206 An inference from three chained equalities. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   𝐶 = 𝐴    &   𝐷 = 𝐵       𝐶 = 𝐷
 
Theorem3eqtr4ri 2207 An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   𝐶 = 𝐴    &   𝐷 = 𝐵       𝐷 = 𝐶
 
Theoremeqtrd 2208 An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴 = 𝐶)
 
Theoremeqtr2d 2209 An equality transitivity deduction. (Contributed by NM, 18-Oct-1999.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵 = 𝐶)       (𝜑𝐶 = 𝐴)
 
Theoremeqtr3d 2210 An equality transitivity equality deduction. (Contributed by NM, 18-Jul-1995.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐴 = 𝐶)       (𝜑𝐵 = 𝐶)
 
Theoremeqtr4d 2211 An equality transitivity equality deduction. (Contributed by NM, 18-Jul-1995.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐵)       (𝜑𝐴 = 𝐶)
 
Theorem3eqtrd 2212 A deduction from three chained equalities. (Contributed by NM, 29-Oct-1995.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵 = 𝐶)    &   (𝜑𝐶 = 𝐷)       (𝜑𝐴 = 𝐷)
 
Theorem3eqtrrd 2213 A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵 = 𝐶)    &   (𝜑𝐶 = 𝐷)       (𝜑𝐷 = 𝐴)
 
Theorem3eqtr2d 2214 A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑𝐴 = 𝐷)
 
Theorem3eqtr2rd 2215 A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑𝐷 = 𝐴)
 
Theorem3eqtr3d 2216 A deduction from three chained equalities. (Contributed by NM, 4-Aug-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑𝐶 = 𝐷)
 
Theorem3eqtr3rd 2217 A deduction from three chained equalities. (Contributed by NM, 14-Jan-2006.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑𝐷 = 𝐶)
 
Theorem3eqtr4d 2218 A deduction from three chained equalities. (Contributed by NM, 4-Aug-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐴)    &   (𝜑𝐷 = 𝐵)       (𝜑𝐶 = 𝐷)
 
Theorem3eqtr4rd 2219 A deduction from three chained equalities. (Contributed by NM, 21-Sep-1995.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐴)    &   (𝜑𝐷 = 𝐵)       (𝜑𝐷 = 𝐶)
 
Theoremeqtrid 2220 An equality transitivity deduction. (Contributed by NM, 21-Jun-1993.)
𝐴 = 𝐵    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴 = 𝐶)
 
Theoremeqtr2id 2221 An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
𝐴 = 𝐵    &   (𝜑𝐵 = 𝐶)       (𝜑𝐶 = 𝐴)
 
Theoremeqtr3id 2222 An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.)
𝐵 = 𝐴    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴 = 𝐶)
 
Theoremeqtr3di 2223 An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
(𝜑𝐴 = 𝐵)    &   𝐴 = 𝐶       (𝜑𝐵 = 𝐶)
 
Theoremeqtrdi 2224 An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.)
(𝜑𝐴 = 𝐵)    &   𝐵 = 𝐶       (𝜑𝐴 = 𝐶)
 
Theoremeqtr2di 2225 An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
(𝜑𝐴 = 𝐵)    &   𝐵 = 𝐶       (𝜑𝐶 = 𝐴)
 
Theoremeqtr4di 2226 An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.)
(𝜑𝐴 = 𝐵)    &   𝐶 = 𝐵       (𝜑𝐴 = 𝐶)
 
Theoremeqtr4id 2227 An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
𝐴 = 𝐵    &   (𝜑𝐶 = 𝐵)       (𝜑𝐴 = 𝐶)
 
Theoremsylan9eq 2228 An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐵 = 𝐶)       ((𝜑𝜓) → 𝐴 = 𝐶)
 
Theoremsylan9req 2229 An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.)
(𝜑𝐵 = 𝐴)    &   (𝜓𝐵 = 𝐶)       ((𝜑𝜓) → 𝐴 = 𝐶)
 
Theoremsylan9eqr 2230 An equality transitivity deduction. (Contributed by NM, 8-May-1994.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐵 = 𝐶)       ((𝜓𝜑) → 𝐴 = 𝐶)
 
Theorem3eqtr3g 2231 A chained equality inference, useful for converting from definitions. (Contributed by NM, 15-Nov-1994.)
(𝜑𝐴 = 𝐵)    &   𝐴 = 𝐶    &   𝐵 = 𝐷       (𝜑𝐶 = 𝐷)
 
Theorem3eqtr3a 2232 A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.)
𝐴 = 𝐵    &   (𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑𝐶 = 𝐷)
 
Theorem3eqtr4g 2233 A chained equality inference, useful for converting to definitions. (Contributed by NM, 5-Aug-1993.)
(𝜑𝐴 = 𝐵)    &   𝐶 = 𝐴    &   𝐷 = 𝐵       (𝜑𝐶 = 𝐷)
 
Theorem3eqtr4a 2234 A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
𝐴 = 𝐵    &   (𝜑𝐶 = 𝐴)    &   (𝜑𝐷 = 𝐵)       (𝜑𝐶 = 𝐷)
 
Theoremeq2tri 2235 A compound transitive inference for class equality. (Contributed by NM, 22-Jan-2004.)
(𝐴 = 𝐶𝐷 = 𝐹)    &   (𝐵 = 𝐷𝐶 = 𝐺)       ((𝐴 = 𝐶𝐵 = 𝐹) ↔ (𝐵 = 𝐷𝐴 = 𝐺))
 
Theoremeleq1w 2236 Weaker version of eleq1 2238 (but more general than elequ1 2150) not depending on ax-ext 2157 nor df-cleq 2168. (Contributed by BJ, 24-Jun-2019.)
(𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
 
Theoremeleq2w 2237 Weaker version of eleq2 2239 (but more general than elequ2 2151) not depending on ax-ext 2157 nor df-cleq 2168. (Contributed by BJ, 29-Sep-2019.)
(𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
 
Theoremeleq1 2238 Equality implies equivalence of membership. (Contributed by NM, 5-Aug-1993.)
(𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
 
Theoremeleq2 2239 Equality implies equivalence of membership. (Contributed by NM, 5-Aug-1993.)
(𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
 
Theoremeleq12 2240 Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))
 
Theoremeleq1i 2241 Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.)
𝐴 = 𝐵       (𝐴𝐶𝐵𝐶)
 
Theoremeleq2i 2242 Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.)
𝐴 = 𝐵       (𝐶𝐴𝐶𝐵)
 
Theoremeleq12i 2243 Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴𝐶𝐵𝐷)
 
Theoremeleq1d 2244 Deduction from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴𝐶𝐵𝐶))
 
Theoremeleq2d 2245 Deduction from equality to equivalence of membership. (Contributed by NM, 27-Dec-1993.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐴𝐶𝐵))
 
Theoremeleq12d 2246 Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝐶𝐵𝐷))
 
Theoremeleq1a 2247 A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.)
(𝐴𝐵 → (𝐶 = 𝐴𝐶𝐵))
 
Theoremeqeltri 2248 Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
𝐴 = 𝐵    &   𝐵𝐶       𝐴𝐶
 
Theoremeqeltrri 2249 Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
𝐴 = 𝐵    &   𝐴𝐶       𝐵𝐶
 
Theoremeleqtri 2250 Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
𝐴𝐵    &   𝐵 = 𝐶       𝐴𝐶
 
Theoremeleqtrri 2251 Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
𝐴𝐵    &   𝐶 = 𝐵       𝐴𝐶
 
Theoremeqeltrd 2252 Substitution of equal classes into membership relation, deduction form. (Contributed by Raph Levien, 10-Dec-2002.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵𝐶)       (𝜑𝐴𝐶)
 
Theoremeqeltrrd 2253 Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐴𝐶)       (𝜑𝐵𝐶)
 
Theoremeleqtrd 2254 Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.)
(𝜑𝐴𝐵)    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴𝐶)
 
Theoremeleqtrrd 2255 Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.)
(𝜑𝐴𝐵)    &   (𝜑𝐶 = 𝐵)       (𝜑𝐴𝐶)
 
Theorem3eltr3i 2256 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
𝐴𝐵    &   𝐴 = 𝐶    &   𝐵 = 𝐷       𝐶𝐷
 
Theorem3eltr4i 2257 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
𝐴𝐵    &   𝐶 = 𝐴    &   𝐷 = 𝐵       𝐶𝐷
 
Theorem3eltr3d 2258 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝜑𝐴𝐵)    &   (𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑𝐶𝐷)
 
Theorem3eltr4d 2259 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝜑𝐴𝐵)    &   (𝜑𝐶 = 𝐴)    &   (𝜑𝐷 = 𝐵)       (𝜑𝐶𝐷)
 
Theorem3eltr3g 2260 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝜑𝐴𝐵)    &   𝐴 = 𝐶    &   𝐵 = 𝐷       (𝜑𝐶𝐷)
 
Theorem3eltr4g 2261 Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
(𝜑𝐴𝐵)    &   𝐶 = 𝐴    &   𝐷 = 𝐵       (𝜑𝐶𝐷)
 
Theoremeqeltrid 2262 B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
𝐴 = 𝐵    &   (𝜑𝐵𝐶)       (𝜑𝐴𝐶)
 
Theoremeqeltrrid 2263 B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
𝐵 = 𝐴    &   (𝜑𝐵𝐶)       (𝜑𝐴𝐶)
 
Theoremeleqtrid 2264 B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
𝐴𝐵    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴𝐶)
 
Theoremeleqtrrid 2265 B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
𝐴𝐵    &   (𝜑𝐶 = 𝐵)       (𝜑𝐴𝐶)
 
Theoremeqeltrdi 2266 A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
(𝜑𝐴 = 𝐵)    &   𝐵𝐶       (𝜑𝐴𝐶)
 
Theoremeqeltrrdi 2267 A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
(𝜑𝐵 = 𝐴)    &   𝐵𝐶       (𝜑𝐴𝐶)
 
Theoremeleqtrdi 2268 A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
(𝜑𝐴𝐵)    &   𝐵 = 𝐶       (𝜑𝐴𝐶)
 
Theoremeleqtrrdi 2269 A membership and equality inference. (Contributed by NM, 24-Apr-2005.)
(𝜑𝐴𝐵)    &   𝐶 = 𝐵       (𝜑𝐴𝐶)
 
Theoremeleq2s 2270 Substitution of equal classes into a membership antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
(𝐴𝐵𝜑)    &   𝐶 = 𝐵       (𝐴𝐶𝜑)
 
Theoremeqneltrd 2271 If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → ¬ 𝐵𝐶)       (𝜑 → ¬ 𝐴𝐶)
 
Theoremeqneltrrd 2272 If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → ¬ 𝐴𝐶)       (𝜑 → ¬ 𝐵𝐶)
 
Theoremneleqtrd 2273 If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.)
(𝜑 → ¬ 𝐶𝐴)    &   (𝜑𝐴 = 𝐵)       (𝜑 → ¬ 𝐶𝐵)
 
Theoremneleqtrrd 2274 If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.)
(𝜑 → ¬ 𝐶𝐵)    &   (𝜑𝐴 = 𝐵)       (𝜑 → ¬ 𝐶𝐴)
 
Theoremcleqh 2275* Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. See also cleqf 2342. (Contributed by NM, 5-Aug-1993.)
(𝑦𝐴 → ∀𝑥 𝑦𝐴)    &   (𝑦𝐵 → ∀𝑥 𝑦𝐵)       (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
 
Theoremnelneq 2276 A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997.)
((𝐴𝐶 ∧ ¬ 𝐵𝐶) → ¬ 𝐴 = 𝐵)
 
Theoremnelneq2 2277 A way of showing two classes are not equal. (Contributed by NM, 12-Jan-2002.)
((𝐴𝐵 ∧ ¬ 𝐴𝐶) → ¬ 𝐵 = 𝐶)
 
Theoremeqsb1lem 2278* Lemma for eqsb1 2279. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
([𝑦 / 𝑥]𝑥 = 𝐴𝑦 = 𝐴)
 
Theoremeqsb1 2279* Substitution for the left-hand side in an equality. Class version of equsb3 1949. (Contributed by Rodolfo Medina, 28-Apr-2010.)
([𝑦 / 𝑥]𝑥 = 𝐴𝑦 = 𝐴)
 
Theoremclelsb1 2280* Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2153). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
 
Theoremclelsb2 2281* Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 2154). (Contributed by Jim Kingdon, 22-Nov-2018.)
([𝑦 / 𝑥]𝐴𝑥𝐴𝑦)
 
Theoremhbxfreq 2282 A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfrbi 1470 for equivalence version. (Contributed by NM, 21-Aug-2007.)
𝐴 = 𝐵    &   (𝑦𝐵 → ∀𝑥 𝑦𝐵)       (𝑦𝐴 → ∀𝑥 𝑦𝐴)
 
Theoremhblem 2283* Change the free variable of a hypothesis builder. (Contributed by NM, 5-Aug-1993.) (Revised by Andrew Salmon, 11-Jul-2011.)
(𝑦𝐴 → ∀𝑥 𝑦𝐴)       (𝑧𝐴 → ∀𝑥 𝑧𝐴)
 
Theoremabeq2 2284* Equality of a class variable and a class abstraction (also called a class builder). Theorem 5.1 of [Quine] p. 34. This theorem shows the relationship between expressions with class abstractions and expressions with class variables. Note that abbi 2289 and its relatives are among those useful for converting theorems with class variables to equivalent theorems with wff variables, by first substituting a class abstraction for each class variable.

Class variables can always be eliminated from a theorem to result in an equivalent theorem with wff variables, and vice-versa. The idea is roughly as follows. To convert a theorem with a wff variable 𝜑 (that has a free variable 𝑥) to a theorem with a class variable 𝐴, we substitute 𝑥𝐴 for 𝜑 throughout and simplify, where 𝐴 is a new class variable not already in the wff. Conversely, to convert a theorem with a class variable 𝐴 to one with 𝜑, we substitute {𝑥𝜑} for 𝐴 throughout and simplify, where 𝑥 and 𝜑 are new set and wff variables not already in the wff. For more information on class variables, see Quine pp. 15-21 and/or Takeuti and Zaring pp. 10-13. (Contributed by NM, 5-Aug-1993.)

(𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
 
Theoremabeq1 2285* Equality of a class variable and a class abstraction. (Contributed by NM, 20-Aug-1993.)
({𝑥𝜑} = 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
 
Theoremabeq2i 2286 Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 3-Apr-1996.)
𝐴 = {𝑥𝜑}       (𝑥𝐴𝜑)
 
Theoremabeq1i 2287 Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 31-Jul-1994.)
{𝑥𝜑} = 𝐴       (𝜑𝑥𝐴)
 
Theoremabeq2d 2288 Equality of a class variable and a class abstraction (deduction). (Contributed by NM, 16-Nov-1995.)
(𝜑𝐴 = {𝑥𝜓})       (𝜑 → (𝑥𝐴𝜓))
 
Theoremabbi 2289 Equivalent wff's correspond to equal class abstractions. (Contributed by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.)
(∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})
 
Theoremabbi2i 2290* Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 5-Aug-1993.)
(𝑥𝐴𝜑)       𝐴 = {𝑥𝜑}
 
Theoremabbii 2291 Equivalent wff's yield equal class abstractions (inference form). (Contributed by NM, 5-Aug-1993.)
(𝜑𝜓)       {𝑥𝜑} = {𝑥𝜓}
 
Theoremabbid 2292 Equivalent wff's yield equal class abstractions (deduction form). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → {𝑥𝜓} = {𝑥𝜒})
 
Theoremabbidv 2293* Equivalent wff's yield equal class abstractions (deduction form). (Contributed by NM, 10-Aug-1993.)
(𝜑 → (𝜓𝜒))       (𝜑 → {𝑥𝜓} = {𝑥𝜒})
 
Theoremabbi2dv 2294* Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.)
(𝜑 → (𝑥𝐴𝜓))       (𝜑𝐴 = {𝑥𝜓})
 
Theoremabbi1dv 2295* Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.)
(𝜑 → (𝜓𝑥𝐴))       (𝜑 → {𝑥𝜓} = 𝐴)
 
Theoremabid2 2296* A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 26-Dec-1993.)
{𝑥𝑥𝐴} = 𝐴
 
Theoremsb8ab 2297 Substitution of variable in class abstraction. (Contributed by Jim Kingdon, 27-Sep-2018.)
𝑦𝜑       {𝑥𝜑} = {𝑦 ∣ [𝑦 / 𝑥]𝜑}
 
Theoremcbvabw 2298* Version of cbvab 2299 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.) Reduce axiom usage. (Revised by Gino Giotto, 25-Aug-2024.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       {𝑥𝜑} = {𝑦𝜓}
 
Theoremcbvab 2299 Rule used to change bound variables, using implicit substitution. (Contributed by Andrew Salmon, 11-Jul-2011.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       {𝑥𝜑} = {𝑦𝜓}
 
Theoremcbvabv 2300* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-May-1999.)
(𝑥 = 𝑦 → (𝜑𝜓))       {𝑥𝜑} = {𝑦𝜓}
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14399
  Copyright terms: Public domain < Previous  Next >