ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleq12i GIF version

Theorem eleq12i 2238
Description: Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.)
Hypotheses
Ref Expression
eleq1i.1 𝐴 = 𝐵
eleq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
eleq12i (𝐴𝐶𝐵𝐷)

Proof of Theorem eleq12i
StepHypRef Expression
1 eleq12i.2 . . 3 𝐶 = 𝐷
21eleq2i 2237 . 2 (𝐴𝐶𝐴𝐷)
3 eleq1i.1 . . 3 𝐴 = 𝐵
43eleq1i 2236 . 2 (𝐴𝐷𝐵𝐷)
52, 4bitri 183 1 (𝐴𝐶𝐵𝐷)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1348  wcel 2141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-clel 2166
This theorem is referenced by:  3eltr3g  2255  3eltr4g  2256  sbcel12g  3064  ennnfonelem1  12362
  Copyright terms: Public domain W3C validator