| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq12i | GIF version | ||
| Description: Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
| Ref | Expression |
|---|---|
| eleq1i.1 | ⊢ 𝐴 = 𝐵 |
| eleq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| eleq12i | ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 2 | 1 | eleq2i 2271 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐷) |
| 3 | eleq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 4 | 3 | eleq1i 2270 | . 2 ⊢ (𝐴 ∈ 𝐷 ↔ 𝐵 ∈ 𝐷) |
| 5 | 2, 4 | bitri 184 | 1 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1372 ∈ wcel 2175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-clel 2200 |
| This theorem is referenced by: 3eltr3g 2289 3eltr4g 2290 sbcel12g 3107 ennnfonelem1 12749 gausslemma2dlem4 15512 |
| Copyright terms: Public domain | W3C validator |