| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq12i | GIF version | ||
| Description: Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
| Ref | Expression |
|---|---|
| eleq1i.1 | ⊢ 𝐴 = 𝐵 |
| eleq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| eleq12i | ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 2 | 1 | eleq2i 2263 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐷) |
| 3 | eleq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 4 | 3 | eleq1i 2262 | . 2 ⊢ (𝐴 ∈ 𝐷 ↔ 𝐵 ∈ 𝐷) |
| 5 | 2, 4 | bitri 184 | 1 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: 3eltr3g 2281 3eltr4g 2282 sbcel12g 3099 ennnfonelem1 12624 gausslemma2dlem4 15305 |
| Copyright terms: Public domain | W3C validator |