| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2strop1g | GIF version | ||
| Description: The other slot of a constructed two-slot structure. Version of 2stropg 13140 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.) |
| Ref | Expression |
|---|---|
| 2str1.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} |
| 2str1.b | ⊢ (Base‘ndx) < 𝑁 |
| 2str1.n | ⊢ 𝑁 ∈ ℕ |
| 2str1.e | ⊢ 𝐸 = Slot 𝑁 |
| Ref | Expression |
|---|---|
| 2strop1g | ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + = (𝐸‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2str1.e | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | 2str1.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
| 3 | 1, 2 | ndxslid 13043 | . 2 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| 4 | 2str1.g | . . 3 ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} | |
| 5 | 2str1.b | . . 3 ⊢ (Base‘ndx) < 𝑁 | |
| 6 | 4, 5, 2 | 2strstr1g 13141 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈(Base‘ndx), 𝑁〉) |
| 7 | simpr 110 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + ∈ 𝑊) | |
| 8 | opexg 4313 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ + ∈ 𝑊) → 〈𝑁, + 〉 ∈ V) | |
| 9 | 2, 7, 8 | sylancr 414 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 〈𝑁, + 〉 ∈ V) |
| 10 | prid2g 3771 | . . . 4 ⊢ (〈𝑁, + 〉 ∈ V → 〈𝑁, + 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉}) | |
| 11 | 9, 10 | syl 14 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 〈𝑁, + 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉}) |
| 12 | 1, 2 | ndxarg 13041 | . . . 4 ⊢ (𝐸‘ndx) = 𝑁 |
| 13 | 12 | opeq1i 3859 | . . 3 ⊢ 〈(𝐸‘ndx), + 〉 = 〈𝑁, + 〉 |
| 14 | 11, 13, 4 | 3eltr4g 2315 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 〈(𝐸‘ndx), + 〉 ∈ 𝐺) |
| 15 | 3, 6, 7, 14 | opelstrsl 13133 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + = (𝐸‘𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 {cpr 3667 〈cop 3669 class class class wbr 4082 ‘cfv 5314 < clt 8169 ℕcn 9098 ndxcnx 13015 Slot cslot 13017 Basecbs 13018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-n0 9358 df-z 9435 df-uz 9711 df-fz 10193 df-struct 13020 df-ndx 13021 df-slot 13022 df-base 13024 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |