ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2strop1g GIF version

Theorem 2strop1g 12064
Description: The other slot of a constructed two-slot structure. Version of 2stropg 12061 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
Hypotheses
Ref Expression
2str1.g 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}
2str1.b (Base‘ndx) < 𝑁
2str1.n 𝑁 ∈ ℕ
2str1.e 𝐸 = Slot 𝑁
Assertion
Ref Expression
2strop1g ((𝐵𝑉+𝑊) → + = (𝐸𝐺))

Proof of Theorem 2strop1g
StepHypRef Expression
1 2str1.e . . 3 𝐸 = Slot 𝑁
2 2str1.n . . 3 𝑁 ∈ ℕ
31, 2ndxslid 11984 . 2 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
4 2str1.g . . 3 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}
5 2str1.b . . 3 (Base‘ndx) < 𝑁
64, 5, 22strstr1g 12062 . 2 ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨(Base‘ndx), 𝑁⟩)
7 simpr 109 . 2 ((𝐵𝑉+𝑊) → +𝑊)
8 opexg 4150 . . . . 5 ((𝑁 ∈ ℕ ∧ +𝑊) → ⟨𝑁, + ⟩ ∈ V)
92, 7, 8sylancr 410 . . . 4 ((𝐵𝑉+𝑊) → ⟨𝑁, + ⟩ ∈ V)
10 prid2g 3628 . . . 4 (⟨𝑁, + ⟩ ∈ V → ⟨𝑁, + ⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩})
119, 10syl 14 . . 3 ((𝐵𝑉+𝑊) → ⟨𝑁, + ⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩})
121, 2ndxarg 11982 . . . 4 (𝐸‘ndx) = 𝑁
1312opeq1i 3708 . . 3 ⟨(𝐸‘ndx), + ⟩ = ⟨𝑁, +
1411, 13, 43eltr4g 2225 . 2 ((𝐵𝑉+𝑊) → ⟨(𝐸‘ndx), + ⟩ ∈ 𝐺)
153, 6, 7, 14opelstrsl 12055 1 ((𝐵𝑉+𝑊) → + = (𝐸𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  Vcvv 2686  {cpr 3528  cop 3530   class class class wbr 3929  cfv 5123   < clt 7800  cn 8720  ndxcnx 11956  Slot cslot 11958  Basecbs 11959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791  df-struct 11961  df-ndx 11962  df-slot 11963  df-base 11965
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator