![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > riotacl2 | GIF version |
Description: Membership law for
"the unique element in 𝐴 such that 𝜑."
(Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
riotacl2 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 2397 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | iotacl 5069 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) | |
3 | 1, 2 | sylbi 120 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
4 | df-riota 5684 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | df-rab 2399 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
6 | 3, 4, 5 | 3eltr4g 2200 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 1463 ∃!weu 1975 {cab 2101 ∃!wreu 2392 {crab 2394 ℩cio 5044 ℩crio 5683 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-eu 1978 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-un 3041 df-sn 3499 df-pr 3500 df-uni 3703 df-iota 5046 df-riota 5684 |
This theorem is referenced by: riotacl 5698 riotasbc 5699 supubti 6838 suplubti 6839 |
Copyright terms: Public domain | W3C validator |