Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeltrid | GIF version |
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrid.1 | ⊢ 𝐴 = 𝐵 |
eqeltrid.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
eqeltrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrid.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | eqeltrid.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
4 | 2, 3 | eqeltrd 2242 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: eqeltrrid 2253 csbexga 4109 otexg 4207 tpexg 4421 dmresexg 4906 f1oabexg 5443 funfvex 5502 riotaexg 5801 riotaprop 5820 fnovex 5871 ovexg 5872 fovrn 5980 fnovrn 5985 cofunexg 6076 cofunex2g 6077 abrexex2g 6085 xpexgALT 6098 mpofvex 6168 tfrex 6332 frec0g 6361 freccllem 6366 ecexg 6501 qsexg 6553 pmex 6615 elixpsn 6697 diffifi 6856 unfidisj 6883 prfidisj 6888 tpfidisj 6889 ssfirab 6895 ssfidc 6896 fnfi 6898 funrnfi 6903 iunfidisj 6907 infclti 6984 supex2g 6994 infex2g 6995 djuex 7004 ctssdccl 7072 addvalex 7781 negcl 8094 intqfrac2 10250 intfracq 10251 frec2uzzd 10331 frecuzrdgrrn 10339 iseqf1olemqpcl 10427 seq3f1olemqsum 10431 bcval5 10672 xrmaxiflemval 11187 climmpt 11237 reccn2ap 11250 zsumdc 11321 fsumzcl2 11342 fsump1i 11370 fsumabs 11402 hash2iun1dif1 11417 mertenslemi1 11472 fprodcllemf 11550 algrf 11973 algcvg 11976 algcvga 11979 algfx 11980 eucalgcvga 11986 eucalg 11987 crth 12152 phimullem 12153 eulerthlemth 12160 prmdiv 12163 pythagtriplem11 12202 pythagtriplem13 12204 pcprecl 12217 infpnlem1 12285 infpnlem2 12286 4sqlem5 12308 mul4sqlem 12319 ennnfonelemj0 12330 ennnfonelemom 12337 ressid 12451 1strbas 12489 2strbasg 12491 2stropg 12492 restid 12562 topnvalg 12563 topnidg 12564 topopn 12606 topcld 12709 uncld 12713 iuncld 12715 unicld 12716 tgrest 12769 restin 12776 cnco 12821 cnrest 12835 cnptoprest2 12840 lmss 12846 txbasval 12867 txcn 12875 cnmpt12f 12886 hmeoco 12916 idhmeo 12917 blres 13034 metrest 13106 qtopbasss 13121 tgqioo 13147 divcnap 13155 fsumcncntop 13156 cncfmet 13179 cdivcncfap 13187 cnrehmeocntop 13193 cnplimcim 13236 limccnpcntop 13244 limccnp2lem 13245 limccnp2cntop 13246 dvfvalap 13250 2sqlem8 13559 bj-snexg 13754 trilpolemcl 13876 |
Copyright terms: Public domain | W3C validator |