ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-clel GIF version

Definition df-clel 2189
Description: Define the membership connective between classes. Theorem 6.3 of [Quine] p. 41, or Proposition 4.6 of [TakeutiZaring] p. 13, which we adopt as a definition. See these references for its metalogical justification. Note that like df-cleq 2186 it extends or "overloads" the use of the existing membership symbol, but unlike df-cleq 2186 it does not strengthen the set of valid wffs of logic when the class variables are replaced with setvar variables (see cleljust 2170), so we don't include any set theory axiom as a hypothesis. See also comments about the syntax under df-clab 2180.

This is called the "axiom of membership" by [Levy] p. 338, who treats the theory of classes as an extralogical extension to our logic and set theory axioms.

For a general discussion of the theory of classes, see https://us.metamath.org/mpeuni/mmset.html#class 2180. (Contributed by NM, 5-Aug-1993.)

Assertion
Ref Expression
df-clel (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-clel
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2wcel 2164 . 2 wff 𝐴𝐵
4 vx . . . . . 6 setvar 𝑥
54cv 1363 . . . . 5 class 𝑥
65, 1wceq 1364 . . . 4 wff 𝑥 = 𝐴
75, 2wcel 2164 . . . 4 wff 𝑥𝐵
86, 7wa 104 . . 3 wff (𝑥 = 𝐴𝑥𝐵)
98, 4wex 1503 . 2 wff 𝑥(𝑥 = 𝐴𝑥𝐵)
103, 9wb 105 1 wff (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
Colors of variables: wff set class
This definition is referenced by:  eleq1w  2254  eleq2w  2255  eleq1  2256  eleq2  2257  clelab  2319  clabel  2320  nfel  2345  nfeld  2352  sbabel  2363  risset  2522  isset  2766  elex  2771  sbcabel  3067  ssel  3173  disjsn  3680  mptpreima  5159
  Copyright terms: Public domain W3C validator