| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3netr4d | GIF version | ||
| Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) |
| Ref | Expression |
|---|---|
| 3netr4d.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 3netr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| 3netr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| 3netr4d | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3netr4d.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | 3netr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 3 | 3netr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
| 4 | 2, 3 | neeq12d 2387 | . 2 ⊢ (𝜑 → (𝐶 ≠ 𝐷 ↔ 𝐴 ≠ 𝐵)) |
| 5 | 1, 4 | mpbird 167 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 |
| This theorem is referenced by: modsumfzodifsn 10488 ennnfonelemnn0 12639 lgsne0 15279 |
| Copyright terms: Public domain | W3C validator |