ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsne0 GIF version

Theorem lgsne0 13539
Description: The Legendre symbol is nonzero (and hence equal to 1 or -1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.)
Assertion
Ref Expression
lgsne0 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 /L 𝑁) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1))

Proof of Theorem lgsne0
Dummy variables 𝑘 𝑛 𝑥 𝑦 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsqcl 10521 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
21adantr 274 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴↑2) ∈ ℤ)
3 1z 9213 . . . . . . . 8 1 ∈ ℤ
4 zdceq 9262 . . . . . . . 8 (((𝐴↑2) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝐴↑2) = 1)
52, 3, 4sylancl 410 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝐴↑2) = 1)
6 iffalse 3527 . . . . . . . . 9 (¬ (𝐴↑2) = 1 → if((𝐴↑2) = 1, 1, 0) = 0)
76a1i 9 . . . . . . . 8 (DECID (𝐴↑2) = 1 → (¬ (𝐴↑2) = 1 → if((𝐴↑2) = 1, 1, 0) = 0))
87necon1aidc 2386 . . . . . . 7 (DECID (𝐴↑2) = 1 → (if((𝐴↑2) = 1, 1, 0) ≠ 0 → (𝐴↑2) = 1))
95, 8syl 14 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (if((𝐴↑2) = 1, 1, 0) ≠ 0 → (𝐴↑2) = 1))
10 iftrue 3524 . . . . . . 7 ((𝐴↑2) = 1 → if((𝐴↑2) = 1, 1, 0) = 1)
11 1ne0 8921 . . . . . . . 8 1 ≠ 0
1211a1i 9 . . . . . . 7 ((𝐴↑2) = 1 → 1 ≠ 0)
1310, 12eqnetrd 2359 . . . . . 6 ((𝐴↑2) = 1 → if((𝐴↑2) = 1, 1, 0) ≠ 0)
149, 13impbid1 141 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (if((𝐴↑2) = 1, 1, 0) ≠ 0 ↔ (𝐴↑2) = 1))
1514adantr 274 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (if((𝐴↑2) = 1, 1, 0) ≠ 0 ↔ (𝐴↑2) = 1))
16 zre 9191 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
1716ad2antrr 480 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → 𝐴 ∈ ℝ)
18 absresq 11016 . . . . . 6 (𝐴 ∈ ℝ → ((abs‘𝐴)↑2) = (𝐴↑2))
1917, 18syl 14 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((abs‘𝐴)↑2) = (𝐴↑2))
20 sq1 10544 . . . . . 6 (1↑2) = 1
2120a1i 9 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (1↑2) = 1)
2219, 21eqeq12d 2180 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (((abs‘𝐴)↑2) = (1↑2) ↔ (𝐴↑2) = 1))
2317recnd 7923 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → 𝐴 ∈ ℂ)
2423abscld 11119 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (abs‘𝐴) ∈ ℝ)
2523absge0d 11122 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → 0 ≤ (abs‘𝐴))
26 1re 7894 . . . . . 6 1 ∈ ℝ
27 0le1 8375 . . . . . 6 0 ≤ 1
28 sq11 10523 . . . . . 6 ((((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (((abs‘𝐴)↑2) = (1↑2) ↔ (abs‘𝐴) = 1))
2926, 27, 28mpanr12 436 . . . . 5 (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → (((abs‘𝐴)↑2) = (1↑2) ↔ (abs‘𝐴) = 1))
3024, 25, 29syl2anc 409 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (((abs‘𝐴)↑2) = (1↑2) ↔ (abs‘𝐴) = 1))
3115, 22, 303bitr2d 215 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (if((𝐴↑2) = 1, 1, 0) ≠ 0 ↔ (abs‘𝐴) = 1))
32 oveq2 5849 . . . . 5 (𝑁 = 0 → (𝐴 /L 𝑁) = (𝐴 /L 0))
33 lgs0 13514 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
3433adantr 274 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
3532, 34sylan9eqr 2220 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L 𝑁) = if((𝐴↑2) = 1, 1, 0))
3635neeq1d 2353 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝐴 /L 𝑁) ≠ 0 ↔ if((𝐴↑2) = 1, 1, 0) ≠ 0))
37 oveq2 5849 . . . . 5 (𝑁 = 0 → (𝐴 gcd 𝑁) = (𝐴 gcd 0))
38 gcdid0 11909 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 gcd 0) = (abs‘𝐴))
3938adantr 274 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 gcd 0) = (abs‘𝐴))
4037, 39sylan9eqr 2220 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 gcd 𝑁) = (abs‘𝐴))
4140eqeq1d 2174 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝐴 gcd 𝑁) = 1 ↔ (abs‘𝐴) = 1))
4231, 36, 413bitr4d 219 . 2 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝐴 /L 𝑁) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1))
43 lgscl 13515 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ)
4443adantr 274 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) ∈ ℤ)
45 0z 9198 . . . 4 0 ∈ ℤ
46 zapne 9261 . . . 4 (((𝐴 /L 𝑁) ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐴 /L 𝑁) # 0 ↔ (𝐴 /L 𝑁) ≠ 0))
4744, 45, 46sylancl 410 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ((𝐴 /L 𝑁) # 0 ↔ (𝐴 /L 𝑁) ≠ 0))
48 eqid 2165 . . . . . . 7 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
4948lgsval4 13521 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
5049breq1d 3991 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝐴 /L 𝑁) # 0 ↔ (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) # 0))
51 simpr 109 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 < 0 ∧ 𝐴 < 0)) → (𝑁 < 0 ∧ 𝐴 < 0))
5251iftrued 3526 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 < 0 ∧ 𝐴 < 0)) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = -1)
53 neg1ne0 8960 . . . . . . . . . . . 12 -1 ≠ 0
5453a1i 9 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 < 0 ∧ 𝐴 < 0)) → -1 ≠ 0)
5552, 54eqnetrd 2359 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 < 0 ∧ 𝐴 < 0)) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ≠ 0)
56 simpr 109 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑁 < 0 ∧ 𝐴 < 0)) → ¬ (𝑁 < 0 ∧ 𝐴 < 0))
5756iffalsed 3529 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑁 < 0 ∧ 𝐴 < 0)) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1)
5811a1i 9 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑁 < 0 ∧ 𝐴 < 0)) → 1 ≠ 0)
5957, 58eqnetrd 2359 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑁 < 0 ∧ 𝐴 < 0)) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ≠ 0)
60 simpr 109 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
61 zdclt 9264 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 < 0)
6260, 45, 61sylancl 410 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 < 0)
63 simpl 108 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℤ)
64 zdclt 9264 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐴 < 0)
6563, 45, 64sylancl 410 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐴 < 0)
66 dcan2 924 . . . . . . . . . . . 12 (DECID 𝑁 < 0 → (DECID 𝐴 < 0 → DECID (𝑁 < 0 ∧ 𝐴 < 0)))
6762, 65, 66sylc 62 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑁 < 0 ∧ 𝐴 < 0))
68 exmiddc 826 . . . . . . . . . . 11 (DECID (𝑁 < 0 ∧ 𝐴 < 0) → ((𝑁 < 0 ∧ 𝐴 < 0) ∨ ¬ (𝑁 < 0 ∧ 𝐴 < 0)))
6967, 68syl 14 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 < 0 ∧ 𝐴 < 0) ∨ ¬ (𝑁 < 0 ∧ 𝐴 < 0)))
7055, 59, 69mpjaodan 788 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ≠ 0)
7170biantrurd 303 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0 ↔ (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ≠ 0 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0)))
72713adant3 1007 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0 ↔ (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ≠ 0 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0)))
73 neg1z 9219 . . . . . . . . . . . . 13 -1 ∈ ℤ
7473a1i 9 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → -1 ∈ ℤ)
75 1zzd 9214 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℤ)
7674, 75, 67ifcldcd 3554 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℤ)
77763adant3 1007 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℤ)
7877zcnd 9310 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ)
79 nnuz 9497 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
80 1zzd 9214 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 1 ∈ ℤ)
8148lgsfcl3 13522 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
8281ffvelrnda 5619 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
83 zmulcl 9240 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑘 · 𝑥) ∈ ℤ)
8483adantl 275 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑘 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝑘 · 𝑥) ∈ ℤ)
8579, 80, 82, 84seqf 10392 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))):ℕ⟶ℤ)
86 nnabscl 11038 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
87863adant1 1005 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
8885, 87ffvelrnd 5620 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℤ)
8988zcnd 9310 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ)
9078, 89mulap0bd 8550 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) # 0 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0) ↔ (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) # 0))
91 zapne 9261 . . . . . . . . . 10 ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℤ ∧ 0 ∈ ℤ) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) # 0 ↔ if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ≠ 0))
9277, 45, 91sylancl 410 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) # 0 ↔ if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ≠ 0))
93 zapne 9261 . . . . . . . . . 10 (((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℤ ∧ 0 ∈ ℤ) → ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0 ↔ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0))
9488, 45, 93sylancl 410 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0 ↔ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0))
9592, 94anbi12d 465 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) # 0 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0) ↔ (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ≠ 0 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0)))
9677, 88zmulcld 9315 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) ∈ ℤ)
97 zapne 9261 . . . . . . . . 9 (((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) ∈ ℤ ∧ 0 ∈ ℤ) → ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) # 0 ↔ (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) ≠ 0))
9896, 45, 97sylancl 410 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) # 0 ↔ (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) ≠ 0))
9990, 95, 983bitr3d 217 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ≠ 0 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0) ↔ (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) ≠ 0))
10072, 99bitr2d 188 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) ≠ 0 ↔ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0))
101100, 98, 943bitr4d 219 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) # 0 ↔ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0))
102 gcd2n0cl 11898 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 gcd 𝑁) ∈ ℕ)
103102nnzd 9308 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 gcd 𝑁) ∈ ℤ)
104 zdceq 9262 . . . . . . . . 9 (((𝐴 gcd 𝑁) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝐴 gcd 𝑁) = 1)
105103, 3, 104sylancl 410 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → DECID (𝐴 gcd 𝑁) = 1)
106 eluz2b3 9538 . . . . . . . . . . . . 13 ((𝐴 gcd 𝑁) ∈ (ℤ‘2) ↔ ((𝐴 gcd 𝑁) ∈ ℕ ∧ (𝐴 gcd 𝑁) ≠ 1))
107 exprmfct 12066 . . . . . . . . . . . . 13 ((𝐴 gcd 𝑁) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝑁))
108106, 107sylbir 134 . . . . . . . . . . . 12 (((𝐴 gcd 𝑁) ∈ ℕ ∧ (𝐴 gcd 𝑁) ≠ 1) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝑁))
109 mulcl 7876 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
110109adantl 275 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
11181ad2antrr 480 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑘 ∈ (ℤ‘1)) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
112 elnnuz 9498 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
113112biimpri 132 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘1) → 𝑘 ∈ ℕ)
114113adantl 275 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℕ)
115111, 114ffvelrnd 5620 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑘 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
116115zcnd 9310 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑘 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℂ)
117 mul02 8281 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℂ → (0 · 𝑘) = 0)
118117adantl 275 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑘 ∈ ℂ) → (0 · 𝑘) = 0)
119 mul01 8283 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℂ → (𝑘 · 0) = 0)
120119adantl 275 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑘 ∈ ℂ) → (𝑘 · 0) = 0)
121 simprr 522 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ∥ (𝐴 gcd 𝑁))
122 prmz 12039 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
123122ad2antrl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ∈ ℤ)
124 simpl1 990 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝐴 ∈ ℤ)
125 simpl2 991 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑁 ∈ ℤ)
126 dvdsgcdb 11942 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑝𝐴𝑝𝑁) ↔ 𝑝 ∥ (𝐴 gcd 𝑁)))
127123, 124, 125, 126syl3anc 1228 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → ((𝑝𝐴𝑝𝑁) ↔ 𝑝 ∥ (𝐴 gcd 𝑁)))
128121, 127mpbird 166 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝𝐴𝑝𝑁))
129128simprd 113 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝𝑁)
130 dvdsabsb 11746 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑝𝑁𝑝 ∥ (abs‘𝑁)))
131123, 125, 130syl2anc 409 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝𝑁𝑝 ∥ (abs‘𝑁)))
132129, 131mpbid 146 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ∥ (abs‘𝑁))
13387adantr 274 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (abs‘𝑁) ∈ ℕ)
134 dvdsle 11778 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℤ ∧ (abs‘𝑁) ∈ ℕ) → (𝑝 ∥ (abs‘𝑁) → 𝑝 ≤ (abs‘𝑁)))
135123, 133, 134syl2anc 409 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝 ∥ (abs‘𝑁) → 𝑝 ≤ (abs‘𝑁)))
136132, 135mpd 13 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ≤ (abs‘𝑁))
137 prmnn 12038 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
138137ad2antrl 482 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ∈ ℕ)
139138, 79eleqtrdi 2258 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ∈ (ℤ‘1))
140133nnzd 9308 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (abs‘𝑁) ∈ ℤ)
141 elfz5 9948 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℤ‘1) ∧ (abs‘𝑁) ∈ ℤ) → (𝑝 ∈ (1...(abs‘𝑁)) ↔ 𝑝 ≤ (abs‘𝑁)))
142139, 140, 141syl2anc 409 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝 ∈ (1...(abs‘𝑁)) ↔ 𝑝 ≤ (abs‘𝑁)))
143136, 142mpbird 166 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ∈ (1...(abs‘𝑁)))
144 eleq1w 2226 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑝 → (𝑛 ∈ ℙ ↔ 𝑝 ∈ ℙ))
145 oveq2 5849 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑝 → (𝐴 /L 𝑛) = (𝐴 /L 𝑝))
146 oveq1 5848 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑝 → (𝑛 pCnt 𝑁) = (𝑝 pCnt 𝑁))
147145, 146oveq12d 5859 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑝 → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)))
148144, 147ifbieq1d 3541 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑝 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑝 ∈ ℙ, ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)), 1))
149 simprl 521 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ∈ ℙ)
150149iftrued 3526 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → if(𝑝 ∈ ℙ, ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)), 1) = ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)))
151 lgscl 13515 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ℤ) → (𝐴 /L 𝑝) ∈ ℤ)
152124, 123, 151syl2anc 409 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝐴 /L 𝑝) ∈ ℤ)
153 simpl3 992 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑁 ≠ 0)
154 pczcl 12226 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑝 pCnt 𝑁) ∈ ℕ0)
155149, 125, 153, 154syl12anc 1226 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝 pCnt 𝑁) ∈ ℕ0)
156 zexpcl 10466 . . . . . . . . . . . . . . . . . 18 (((𝐴 /L 𝑝) ∈ ℤ ∧ (𝑝 pCnt 𝑁) ∈ ℕ0) → ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)) ∈ ℤ)
157152, 155, 156syl2anc 409 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)) ∈ ℤ)
158150, 157eqeltrd 2242 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → if(𝑝 ∈ ℙ, ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)), 1) ∈ ℤ)
15948, 148, 138, 158fvmptd3 5578 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑝) = if(𝑝 ∈ ℙ, ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)), 1))
160 oveq2 5849 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = 2 → (𝐴 /L 𝑝) = (𝐴 /L 2))
161 lgs2 13518 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℤ → (𝐴 /L 2) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)))
162124, 161syl 14 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝐴 /L 2) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)))
163160, 162sylan9eqr 2220 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 = 2) → (𝐴 /L 𝑝) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)))
164 simpr 109 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 = 2) → 𝑝 = 2)
165128simpld 111 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝𝐴)
166165adantr 274 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 = 2) → 𝑝𝐴)
167164, 166eqbrtrrd 4005 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 = 2) → 2 ∥ 𝐴)
168167iftrued 3526 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 = 2) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) = 0)
169163, 168eqtrd 2198 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 = 2) → (𝐴 /L 𝑝) = 0)
170 simpll1 1026 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝐴 ∈ ℤ)
171149adantr 274 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝑝 ∈ ℙ)
172 simpr 109 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝑝 ≠ 2)
173 eldifsn 3702 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℙ ∖ {2}) ↔ (𝑝 ∈ ℙ ∧ 𝑝 ≠ 2))
174171, 172, 173sylanbrc 414 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝑝 ∈ (ℙ ∖ {2}))
175 lgsval3 13519 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑝) = ((((𝐴↑((𝑝 − 1) / 2)) + 1) mod 𝑝) − 1))
176170, 174, 175syl2anc 409 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (𝐴 /L 𝑝) = ((((𝐴↑((𝑝 − 1) / 2)) + 1) mod 𝑝) − 1))
177 oddprm 12187 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑝 ∈ (ℙ ∖ {2}) → ((𝑝 − 1) / 2) ∈ ℕ)
178174, 177syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → ((𝑝 − 1) / 2) ∈ ℕ)
179178nnnn0d 9163 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → ((𝑝 − 1) / 2) ∈ ℕ0)
180 zexpcl 10466 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℤ ∧ ((𝑝 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑝 − 1) / 2)) ∈ ℤ)
181170, 179, 180syl2anc 409 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (𝐴↑((𝑝 − 1) / 2)) ∈ ℤ)
182 zq 9560 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴↑((𝑝 − 1) / 2)) ∈ ℤ → (𝐴↑((𝑝 − 1) / 2)) ∈ ℚ)
183181, 182syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (𝐴↑((𝑝 − 1) / 2)) ∈ ℚ)
184 zq 9560 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ∈ ℤ → 0 ∈ ℚ)
18545, 184mp1i 10 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 0 ∈ ℚ)
186 1nn 8864 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℕ
187 nnq 9567 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 ∈ ℕ → 1 ∈ ℚ)
188186, 187mp1i 10 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 1 ∈ ℚ)
189171, 137syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝑝 ∈ ℕ)
190 nnq 9567 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 ∈ ℕ → 𝑝 ∈ ℚ)
191189, 190syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝑝 ∈ ℚ)
192 nngt0 8878 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 ∈ ℕ → 0 < 𝑝)
193189, 192syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 0 < 𝑝)
194 0zd 9199 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 0 ∈ ℤ)
195165adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝑝𝐴)
196 dvdsval3 11727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑝 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (𝑝𝐴 ↔ (𝐴 mod 𝑝) = 0))
197189, 170, 196syl2anc 409 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (𝑝𝐴 ↔ (𝐴 mod 𝑝) = 0))
198195, 197mpbid 146 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (𝐴 mod 𝑝) = 0)
199 q0mod 10286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑝 ∈ ℚ ∧ 0 < 𝑝) → (0 mod 𝑝) = 0)
200190, 192, 199syl2anc 409 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑝 ∈ ℕ → (0 mod 𝑝) = 0)
201189, 200syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (0 mod 𝑝) = 0)
202198, 201eqtr4d 2201 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (𝐴 mod 𝑝) = (0 mod 𝑝))
203170, 194, 179, 191, 193, 202modqexp 10577 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → ((𝐴↑((𝑝 − 1) / 2)) mod 𝑝) = ((0↑((𝑝 − 1) / 2)) mod 𝑝))
2041780expd 10600 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (0↑((𝑝 − 1) / 2)) = 0)
205204oveq1d 5856 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → ((0↑((𝑝 − 1) / 2)) mod 𝑝) = (0 mod 𝑝))
206203, 205eqtrd 2198 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → ((𝐴↑((𝑝 − 1) / 2)) mod 𝑝) = (0 mod 𝑝))
207183, 185, 188, 191, 193, 206modqadd1 10292 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (((𝐴↑((𝑝 − 1) / 2)) + 1) mod 𝑝) = ((0 + 1) mod 𝑝))
208 0p1e1 8967 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 + 1) = 1
209208oveq1i 5851 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 + 1) mod 𝑝) = (1 mod 𝑝)
210207, 209eqtrdi 2214 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (((𝐴↑((𝑝 − 1) / 2)) + 1) mod 𝑝) = (1 mod 𝑝))
211 prmuz2 12059 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
212171, 211syl 14 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝑝 ∈ (ℤ‘2))
213 eluzelz 9471 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 ∈ (ℤ‘2) → 𝑝 ∈ ℤ)
214 zq 9560 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 ∈ ℤ → 𝑝 ∈ ℚ)
215213, 214syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 ∈ (ℤ‘2) → 𝑝 ∈ ℚ)
216 eluz2gt1 9536 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 ∈ (ℤ‘2) → 1 < 𝑝)
217 q1mod 10287 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ ℚ ∧ 1 < 𝑝) → (1 mod 𝑝) = 1)
218215, 216, 217syl2anc 409 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ (ℤ‘2) → (1 mod 𝑝) = 1)
219212, 218syl 14 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (1 mod 𝑝) = 1)
220210, 219eqtrd 2198 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (((𝐴↑((𝑝 − 1) / 2)) + 1) mod 𝑝) = 1)
221220oveq1d 5856 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → ((((𝐴↑((𝑝 − 1) / 2)) + 1) mod 𝑝) − 1) = (1 − 1))
222 1m1e0 8922 . . . . . . . . . . . . . . . . . . . 20 (1 − 1) = 0
223221, 222eqtrdi 2214 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → ((((𝐴↑((𝑝 − 1) / 2)) + 1) mod 𝑝) − 1) = 0)
224176, 223eqtrd 2198 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (𝐴 /L 𝑝) = 0)
225 2z 9215 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℤ
226 zdceq 9262 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℤ ∧ 2 ∈ ℤ) → DECID 𝑝 = 2)
227123, 225, 226sylancl 410 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → DECID 𝑝 = 2)
228 dcne 2346 . . . . . . . . . . . . . . . . . . 19 (DECID 𝑝 = 2 ↔ (𝑝 = 2 ∨ 𝑝 ≠ 2))
229227, 228sylib 121 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝 = 2 ∨ 𝑝 ≠ 2))
230169, 224, 229mpjaodan 788 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝐴 /L 𝑝) = 0)
231230oveq1d 5856 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)) = (0↑(𝑝 pCnt 𝑁)))
232 zq 9560 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
233125, 232syl 14 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑁 ∈ ℚ)
234 pcabs 12253 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑝 pCnt (abs‘𝑁)) = (𝑝 pCnt 𝑁))
235149, 233, 234syl2anc 409 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝 pCnt (abs‘𝑁)) = (𝑝 pCnt 𝑁))
236 pcelnn 12248 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℙ ∧ (abs‘𝑁) ∈ ℕ) → ((𝑝 pCnt (abs‘𝑁)) ∈ ℕ ↔ 𝑝 ∥ (abs‘𝑁)))
237149, 133, 236syl2anc 409 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → ((𝑝 pCnt (abs‘𝑁)) ∈ ℕ ↔ 𝑝 ∥ (abs‘𝑁)))
238132, 237mpbird 166 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝 pCnt (abs‘𝑁)) ∈ ℕ)
239235, 238eqeltrrd 2243 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝 pCnt 𝑁) ∈ ℕ)
2402390expd 10600 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (0↑(𝑝 pCnt 𝑁)) = 0)
241231, 240eqtrd 2198 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)) = 0)
242159, 150, 2413eqtrd 2202 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑝) = 0)
243110, 116, 118, 120, 143, 242seq3z 10442 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = 0)
244243rexlimdvaa 2583 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝑁) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = 0))
245108, 244syl5 32 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (((𝐴 gcd 𝑁) ∈ ℕ ∧ (𝐴 gcd 𝑁) ≠ 1) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = 0))
246102, 245mpand 426 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝐴 gcd 𝑁) ≠ 1 → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = 0))
247246a1d 22 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (DECID (𝐴 gcd 𝑁) = 1 → ((𝐴 gcd 𝑁) ≠ 1 → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = 0)))
248247necon1ddc 2413 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (DECID (𝐴 gcd 𝑁) = 1 → ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0 → (𝐴 gcd 𝑁) = 1)))
249105, 248mpd 13 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0 → (𝐴 gcd 𝑁) = 1))
25094, 249sylbid 149 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0 → (𝐴 gcd 𝑁) = 1))
251 1zzd 9214 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) → 1 ∈ ℤ)
252 eleq1w 2226 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ))
253 oveq2 5849 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝐴 /L 𝑛) = (𝐴 /L 𝑘))
254 oveq1 5848 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑛 pCnt 𝑁) = (𝑘 pCnt 𝑁))
255253, 254oveq12d 5859 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)))
256252, 255ifbieq1d 3541 . . . . . . . . . . . 12 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
257 simpr 109 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
258 simp1 987 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐴 ∈ ℤ)
259258ad3antrrr 484 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ ℙ) → 𝐴 ∈ ℤ)
260 prmz 12039 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℙ → 𝑘 ∈ ℤ)
261260adantl 275 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℤ)
262 lgscl 13515 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐴 /L 𝑘) ∈ ℤ)
263259, 261, 262syl2anc 409 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℤ)
264 simpr 109 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℙ)
265 simp2 988 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ)
266265ad3antrrr 484 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ ℙ) → 𝑁 ∈ ℤ)
267 simp3 989 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ≠ 0)
268267ad3antrrr 484 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ ℙ) → 𝑁 ≠ 0)
269 pczcl 12226 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑘 pCnt 𝑁) ∈ ℕ0)
270264, 266, 268, 269syl12anc 1226 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑁) ∈ ℕ0)
271 zexpcl 10466 . . . . . . . . . . . . . 14 (((𝐴 /L 𝑘) ∈ ℤ ∧ (𝑘 pCnt 𝑁) ∈ ℕ0) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ ℤ)
272263, 270, 271syl2anc 409 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ ℤ)
273 1zzd 9214 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) ∧ ¬ 𝑘 ∈ ℙ) → 1 ∈ ℤ)
274 prmdc 12058 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → DECID 𝑘 ∈ ℙ)
275274adantl 275 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) → DECID 𝑘 ∈ ℙ)
276272, 273, 275ifcldadc 3548 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ ℤ)
27748, 256, 257, 276fvmptd3 5578 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
278 simpll1 1026 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → 𝐴 ∈ ℤ)
279260adantl 275 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℤ)
280278, 279, 262syl2anc 409 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℤ)
281280zcnd 9310 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℂ)
282281adantr 274 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) → (𝐴 /L 𝑘) ∈ ℂ)
283 oveq2 5849 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 2 → (𝐴 /L 𝑘) = (𝐴 /L 2))
284278adantr 274 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) → 𝐴 ∈ ℤ)
285284, 161syl 14 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) → (𝐴 /L 2) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)))
286283, 285sylan9eqr 2220 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 = 2) → (𝐴 /L 𝑘) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)))
287 nprmdvds1 12068 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 ∈ ℙ → ¬ 𝑘 ∥ 1)
288287adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ¬ 𝑘 ∥ 1)
289 simpll2 1027 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → 𝑁 ∈ ℤ)
290 dvdsgcdb 11942 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑘𝐴𝑘𝑁) ↔ 𝑘 ∥ (𝐴 gcd 𝑁)))
291279, 278, 289, 290syl3anc 1228 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ((𝑘𝐴𝑘𝑁) ↔ 𝑘 ∥ (𝐴 gcd 𝑁)))
292 simplr 520 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝐴 gcd 𝑁) = 1)
293292breq2d 3993 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝑘 ∥ (𝐴 gcd 𝑁) ↔ 𝑘 ∥ 1))
294291, 293bitrd 187 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ((𝑘𝐴𝑘𝑁) ↔ 𝑘 ∥ 1))
295288, 294mtbird 663 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ¬ (𝑘𝐴𝑘𝑁))
296 imnan 680 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘𝐴 → ¬ 𝑘𝑁) ↔ ¬ (𝑘𝐴𝑘𝑁))
297295, 296sylibr 133 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝑘𝐴 → ¬ 𝑘𝑁))
298297con2d 614 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝑘𝑁 → ¬ 𝑘𝐴))
299298imp 123 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) → ¬ 𝑘𝐴)
300 breq1 3984 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 2 → (𝑘𝐴 ↔ 2 ∥ 𝐴))
301300notbid 657 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 2 → (¬ 𝑘𝐴 ↔ ¬ 2 ∥ 𝐴))
302299, 301syl5ibcom 154 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) → (𝑘 = 2 → ¬ 2 ∥ 𝐴))
303302imp 123 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 = 2) → ¬ 2 ∥ 𝐴)
304303iffalsed 3529 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 = 2) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) = if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
305286, 304eqtrd 2198 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 = 2) → (𝐴 /L 𝑘) = if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
306 simpr 109 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ (𝐴 mod 8) ∈ {1, 7}) → (𝐴 mod 8) ∈ {1, 7})
307306iftrued 3526 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ (𝐴 mod 8) ∈ {1, 7}) → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) = 1)
30811a1i 9 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ (𝐴 mod 8) ∈ {1, 7}) → 1 ≠ 0)
309307, 308eqnetrd 2359 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ (𝐴 mod 8) ∈ {1, 7}) → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ≠ 0)
310 simpr 109 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 mod 8) ∈ {1, 7}) → ¬ (𝐴 mod 8) ∈ {1, 7})
311310iffalsed 3529 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 mod 8) ∈ {1, 7}) → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) = -1)
31253a1i 9 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 mod 8) ∈ {1, 7}) → -1 ≠ 0)
313311, 312eqnetrd 2359 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 mod 8) ∈ {1, 7}) → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ≠ 0)
314 8nn 9020 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 8 ∈ ℕ
315 zmodcl 10275 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℤ ∧ 8 ∈ ℕ) → (𝐴 mod 8) ∈ ℕ0)
316314, 315mpan2 422 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ∈ ℤ → (𝐴 mod 8) ∈ ℕ0)
317316nn0zd 9307 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∈ ℤ → (𝐴 mod 8) ∈ ℤ)
318 zdceq 9262 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 mod 8) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝐴 mod 8) = 1)
319317, 3, 318sylancl 410 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ ℤ → DECID (𝐴 mod 8) = 1)
320 7nn 9019 . . . . . . . . . . . . . . . . . . . . . . . . . 26 7 ∈ ℕ
321320nnzi 9208 . . . . . . . . . . . . . . . . . . . . . . . . 25 7 ∈ ℤ
322 zdceq 9262 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 mod 8) ∈ ℤ ∧ 7 ∈ ℤ) → DECID (𝐴 mod 8) = 7)
323317, 321, 322sylancl 410 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ ℤ → DECID (𝐴 mod 8) = 7)
324 dcor 925 . . . . . . . . . . . . . . . . . . . . . . . 24 (DECID (𝐴 mod 8) = 1 → (DECID (𝐴 mod 8) = 7 → DECID ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
325319, 323, 324sylc 62 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ∈ ℤ → DECID ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7))
326 elprg 3595 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 mod 8) ∈ ℕ0 → ((𝐴 mod 8) ∈ {1, 7} ↔ ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
327316, 326syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ ℤ → ((𝐴 mod 8) ∈ {1, 7} ↔ ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
328327dcbid 828 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ∈ ℤ → (DECID (𝐴 mod 8) ∈ {1, 7} ↔ DECID ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7)))
329325, 328mpbird 166 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℤ → DECID (𝐴 mod 8) ∈ {1, 7})
330 exmiddc 826 . . . . . . . . . . . . . . . . . . . . . 22 (DECID (𝐴 mod 8) ∈ {1, 7} → ((𝐴 mod 8) ∈ {1, 7} ∨ ¬ (𝐴 mod 8) ∈ {1, 7}))
331329, 330syl 14 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℤ → ((𝐴 mod 8) ∈ {1, 7} ∨ ¬ (𝐴 mod 8) ∈ {1, 7}))
332309, 313, 331mpjaodan 788 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℤ → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ≠ 0)
333258, 332syl 14 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ≠ 0)
334333ad4antr 486 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 = 2) → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ≠ 0)
335305, 334eqnetrd 2359 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 = 2) → (𝐴 /L 𝑘) ≠ 0)
336 simpr 109 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℙ)
337336ad2antrr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → 𝑘 ∈ ℙ)
338337, 287syl 14 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ¬ 𝑘 ∥ 1)
339 simplr 520 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → 𝑘𝑁)
340337, 260syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → 𝑘 ∈ ℤ)
341284adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → 𝐴 ∈ ℤ)
342 simpr 109 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → 𝑘 ≠ 2)
343 eldifsn 3702 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 ∈ (ℙ ∖ {2}) ↔ (𝑘 ∈ ℙ ∧ 𝑘 ≠ 2))
344337, 342, 343sylanbrc 414 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → 𝑘 ∈ (ℙ ∖ {2}))
345 oddprm 12187 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 ∈ (ℙ ∖ {2}) → ((𝑘 − 1) / 2) ∈ ℕ)
346344, 345syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ((𝑘 − 1) / 2) ∈ ℕ)
347346nnnn0d 9163 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ((𝑘 − 1) / 2) ∈ ℕ0)
348 zexpcl 10466 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℤ ∧ ((𝑘 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑘 − 1) / 2)) ∈ ℤ)
349341, 347, 348syl2anc 409 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (𝐴↑((𝑘 − 1) / 2)) ∈ ℤ)
350289ad2antrr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → 𝑁 ∈ ℤ)
351 dvdsgcd 11941 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑘 ∈ ℤ ∧ (𝐴↑((𝑘 − 1) / 2)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑘 ∥ (𝐴↑((𝑘 − 1) / 2)) ∧ 𝑘𝑁) → 𝑘 ∥ ((𝐴↑((𝑘 − 1) / 2)) gcd 𝑁)))
352340, 349, 350, 351syl3anc 1228 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ((𝑘 ∥ (𝐴↑((𝑘 − 1) / 2)) ∧ 𝑘𝑁) → 𝑘 ∥ ((𝐴↑((𝑘 − 1) / 2)) gcd 𝑁)))
353339, 352mpan2d 425 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (𝑘 ∥ (𝐴↑((𝑘 − 1) / 2)) → 𝑘 ∥ ((𝐴↑((𝑘 − 1) / 2)) gcd 𝑁)))
354341zcnd 9310 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → 𝐴 ∈ ℂ)
355354, 347absexpd 11130 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (abs‘(𝐴↑((𝑘 − 1) / 2))) = ((abs‘𝐴)↑((𝑘 − 1) / 2)))
356355oveq1d 5856 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ((abs‘(𝐴↑((𝑘 − 1) / 2))) gcd (abs‘𝑁)) = (((abs‘𝐴)↑((𝑘 − 1) / 2)) gcd (abs‘𝑁)))
357 gcdabs 11917 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴↑((𝑘 − 1) / 2)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴↑((𝑘 − 1) / 2))) gcd (abs‘𝑁)) = ((𝐴↑((𝑘 − 1) / 2)) gcd 𝑁))
358349, 350, 357syl2anc 409 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ((abs‘(𝐴↑((𝑘 − 1) / 2))) gcd (abs‘𝑁)) = ((𝐴↑((𝑘 − 1) / 2)) gcd 𝑁))
359 gcdabs 11917 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝐴) gcd (abs‘𝑁)) = (𝐴 gcd 𝑁))
360341, 350, 359syl2anc 409 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ((abs‘𝐴) gcd (abs‘𝑁)) = (𝐴 gcd 𝑁))
361292ad2antrr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (𝐴 gcd 𝑁) = 1)
362360, 361eqtrd 2198 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ((abs‘𝐴) gcd (abs‘𝑁)) = 1)
363299adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ¬ 𝑘𝐴)
364 dvds0 11742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 ∈ ℤ → 𝑘 ∥ 0)
365340, 364syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → 𝑘 ∥ 0)
366 breq2 3985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐴 = 0 → (𝑘𝐴𝑘 ∥ 0))
367365, 366syl5ibrcom 156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (𝐴 = 0 → 𝑘𝐴))
368367necon3bd 2378 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (¬ 𝑘𝐴𝐴 ≠ 0))
369363, 368mpd 13 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → 𝐴 ≠ 0)
370 nnabscl 11038 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℕ)
371341, 369, 370syl2anc 409 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (abs‘𝐴) ∈ ℕ)
372 simpll3 1028 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → 𝑁 ≠ 0)
373289, 372, 86syl2anc 409 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (abs‘𝑁) ∈ ℕ)
374373ad2antrr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (abs‘𝑁) ∈ ℕ)
375 rplpwr 11956 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((abs‘𝐴) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ ∧ ((𝑘 − 1) / 2) ∈ ℕ) → (((abs‘𝐴) gcd (abs‘𝑁)) = 1 → (((abs‘𝐴)↑((𝑘 − 1) / 2)) gcd (abs‘𝑁)) = 1))
376371, 374, 346, 375syl3anc 1228 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (((abs‘𝐴) gcd (abs‘𝑁)) = 1 → (((abs‘𝐴)↑((𝑘 − 1) / 2)) gcd (abs‘𝑁)) = 1))
377362, 376mpd 13 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (((abs‘𝐴)↑((𝑘 − 1) / 2)) gcd (abs‘𝑁)) = 1)
378356, 358, 3773eqtr3d 2206 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ((𝐴↑((𝑘 − 1) / 2)) gcd 𝑁) = 1)
379378breq2d 3993 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (𝑘 ∥ ((𝐴↑((𝑘 − 1) / 2)) gcd 𝑁) ↔ 𝑘 ∥ 1))
380353, 379sylibd 148 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (𝑘 ∥ (𝐴↑((𝑘 − 1) / 2)) → 𝑘 ∥ 1))
381338, 380mtod 653 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ¬ 𝑘 ∥ (𝐴↑((𝑘 − 1) / 2)))
382 prmnn 12038 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ ℙ → 𝑘 ∈ ℕ)
383382adantl 275 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℕ)
384383ad2antrr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → 𝑘 ∈ ℕ)
385 dvdsval3 11727 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℕ ∧ (𝐴↑((𝑘 − 1) / 2)) ∈ ℤ) → (𝑘 ∥ (𝐴↑((𝑘 − 1) / 2)) ↔ ((𝐴↑((𝑘 − 1) / 2)) mod 𝑘) = 0))
386384, 349, 385syl2anc 409 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (𝑘 ∥ (𝐴↑((𝑘 − 1) / 2)) ↔ ((𝐴↑((𝑘 − 1) / 2)) mod 𝑘) = 0))
387386necon3bbid 2375 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (¬ 𝑘 ∥ (𝐴↑((𝑘 − 1) / 2)) ↔ ((𝐴↑((𝑘 − 1) / 2)) mod 𝑘) ≠ 0))
388381, 387mpbid 146 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ((𝐴↑((𝑘 − 1) / 2)) mod 𝑘) ≠ 0)
389 lgsvalmod 13520 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑘) mod 𝑘) = ((𝐴↑((𝑘 − 1) / 2)) mod 𝑘))
390341, 344, 389syl2anc 409 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ((𝐴 /L 𝑘) mod 𝑘) = ((𝐴↑((𝑘 − 1) / 2)) mod 𝑘))
391 nnq 9567 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℕ → 𝑘 ∈ ℚ)
392 nngt0 8878 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℕ → 0 < 𝑘)
393 q0mod 10286 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℚ ∧ 0 < 𝑘) → (0 mod 𝑘) = 0)
394391, 392, 393syl2anc 409 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → (0 mod 𝑘) = 0)
395384, 394syl 14 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (0 mod 𝑘) = 0)
396388, 390, 3953netr4d 2368 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → ((𝐴 /L 𝑘) mod 𝑘) ≠ (0 mod 𝑘))
397 oveq1 5848 . . . . . . . . . . . . . . . . . . 19 ((𝐴 /L 𝑘) = 0 → ((𝐴 /L 𝑘) mod 𝑘) = (0 mod 𝑘))
398397necon3i 2383 . . . . . . . . . . . . . . . . . 18 (((𝐴 /L 𝑘) mod 𝑘) ≠ (0 mod 𝑘) → (𝐴 /L 𝑘) ≠ 0)
399396, 398syl 14 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) ∧ 𝑘 ≠ 2) → (𝐴 /L 𝑘) ≠ 0)
400279adantr 274 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) → 𝑘 ∈ ℤ)
401 zdceq 9262 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ 2 ∈ ℤ) → DECID 𝑘 = 2)
402400, 225, 401sylancl 410 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) → DECID 𝑘 = 2)
403 dcne 2346 . . . . . . . . . . . . . . . . . 18 (DECID 𝑘 = 2 ↔ (𝑘 = 2 ∨ 𝑘 ≠ 2))
404402, 403sylib 121 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) → (𝑘 = 2 ∨ 𝑘 ≠ 2))
405335, 399, 404mpjaodan 788 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) → (𝐴 /L 𝑘) ≠ 0)
406280adantr 274 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) → (𝐴 /L 𝑘) ∈ ℤ)
407 zapne 9261 . . . . . . . . . . . . . . . . 17 (((𝐴 /L 𝑘) ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐴 /L 𝑘) # 0 ↔ (𝐴 /L 𝑘) ≠ 0))
408406, 45, 407sylancl 410 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) → ((𝐴 /L 𝑘) # 0 ↔ (𝐴 /L 𝑘) ≠ 0))
409405, 408mpbird 166 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) → (𝐴 /L 𝑘) # 0)
410336, 289, 372, 269syl12anc 1226 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑁) ∈ ℕ0)
411410nn0zd 9307 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑁) ∈ ℤ)
412411adantr 274 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) → (𝑘 pCnt 𝑁) ∈ ℤ)
413 expclzaplem 10475 . . . . . . . . . . . . . . 15 (((𝐴 /L 𝑘) ∈ ℂ ∧ (𝐴 /L 𝑘) # 0 ∧ (𝑘 pCnt 𝑁) ∈ ℤ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0})
414282, 409, 412, 413syl3anc 1228 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘𝑁) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0})
415 dvdsabsb 11746 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘𝑁𝑘 ∥ (abs‘𝑁)))
416279, 289, 415syl2anc 409 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝑘𝑁𝑘 ∥ (abs‘𝑁)))
417416notbid 657 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (¬ 𝑘𝑁 ↔ ¬ 𝑘 ∥ (abs‘𝑁)))
418 pceq0 12249 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℙ ∧ (abs‘𝑁) ∈ ℕ) → ((𝑘 pCnt (abs‘𝑁)) = 0 ↔ ¬ 𝑘 ∥ (abs‘𝑁)))
419336, 373, 418syl2anc 409 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ((𝑘 pCnt (abs‘𝑁)) = 0 ↔ ¬ 𝑘 ∥ (abs‘𝑁)))
420289, 232syl 14 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → 𝑁 ∈ ℚ)
421 pcabs 12253 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑘 pCnt (abs‘𝑁)) = (𝑘 pCnt 𝑁))
422336, 420, 421syl2anc 409 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt (abs‘𝑁)) = (𝑘 pCnt 𝑁))
423422eqeq1d 2174 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ((𝑘 pCnt (abs‘𝑁)) = 0 ↔ (𝑘 pCnt 𝑁) = 0))
424417, 419, 4233bitr2rd 216 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ((𝑘 pCnt 𝑁) = 0 ↔ ¬ 𝑘𝑁))
425424biimpar 295 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ ¬ 𝑘𝑁) → (𝑘 pCnt 𝑁) = 0)
426425oveq2d 5857 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ ¬ 𝑘𝑁) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) = ((𝐴 /L 𝑘)↑0))
427281adantr 274 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ ¬ 𝑘𝑁) → (𝐴 /L 𝑘) ∈ ℂ)
428427exp0d 10578 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ ¬ 𝑘𝑁) → ((𝐴 /L 𝑘)↑0) = 1)
429426, 428eqtrd 2198 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ ¬ 𝑘𝑁) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) = 1)
430 ax-1cn 7842 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
431 1ap0 8484 . . . . . . . . . . . . . . . 16 1 # 0
432 breq1 3984 . . . . . . . . . . . . . . . . 17 (𝑥 = 1 → (𝑥 # 0 ↔ 1 # 0))
433432elrab 2881 . . . . . . . . . . . . . . . 16 (1 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (1 ∈ ℂ ∧ 1 # 0))
434430, 431, 433mpbir2an 932 . . . . . . . . . . . . . . 15 1 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}
435429, 434eqeltrdi 2256 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ ¬ 𝑘𝑁) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0})
436 dvdsdc 11734 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID 𝑘𝑁)
437383, 289, 436syl2anc 409 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → DECID 𝑘𝑁)
438 exmiddc 826 . . . . . . . . . . . . . . 15 (DECID 𝑘𝑁 → (𝑘𝑁 ∨ ¬ 𝑘𝑁))
439437, 438syl 14 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝑘𝑁 ∨ ¬ 𝑘𝑁))
440414, 435, 439mpjaodan 788 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0})
441440adantlr 469 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0})
442434a1i 9 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) ∧ ¬ 𝑘 ∈ ℙ) → 1 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0})
443441, 442, 275ifcldadc 3548 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0})
444277, 443eqeltrd 2242 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0})
445 breq1 3984 . . . . . . . . . . . . . 14 (𝑥 = 𝑘 → (𝑥 # 0 ↔ 𝑘 # 0))
446445elrab 2881 . . . . . . . . . . . . 13 (𝑘 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑘 ∈ ℂ ∧ 𝑘 # 0))
447 breq1 3984 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑥 # 0 ↔ 𝑦 # 0))
448447elrab 2881 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑦 ∈ ℂ ∧ 𝑦 # 0))
449 mulcl 7876 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑘 · 𝑦) ∈ ℂ)
450449ad2ant2r 501 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℂ ∧ 𝑘 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑘 · 𝑦) ∈ ℂ)
451 mulap0 8547 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℂ ∧ 𝑘 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑘 · 𝑦) # 0)
452450, 451jca 304 . . . . . . . . . . . . 13 (((𝑘 ∈ ℂ ∧ 𝑘 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → ((𝑘 · 𝑦) ∈ ℂ ∧ (𝑘 · 𝑦) # 0))
453446, 448, 452syl2anb 289 . . . . . . . . . . . 12 ((𝑘 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑦 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → ((𝑘 · 𝑦) ∈ ℂ ∧ (𝑘 · 𝑦) # 0))
454 breq1 3984 . . . . . . . . . . . . 13 (𝑥 = (𝑘 · 𝑦) → (𝑥 # 0 ↔ (𝑘 · 𝑦) # 0))
455454elrab 2881 . . . . . . . . . . . 12 ((𝑘 · 𝑦) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ ((𝑘 · 𝑦) ∈ ℂ ∧ (𝑘 · 𝑦) # 0))
456453, 455sylibr 133 . . . . . . . . . . 11 ((𝑘 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑦 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (𝑘 · 𝑦) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0})
457456adantl 275 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ (𝑘 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑦 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0})) → (𝑘 · 𝑦) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0})
45879, 251, 444, 457seqf 10392 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))):ℕ⟶{𝑥 ∈ ℂ ∣ 𝑥 # 0})
45987adantr 274 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) → (abs‘𝑁) ∈ ℕ)
460458, 459ffvelrnd 5620 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0})
461 breq1 3984 . . . . . . . . . 10 (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) → (𝑥 # 0 ↔ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0))
462461elrab 2881 . . . . . . . . 9 ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0))
463462simprbi 273 . . . . . . . 8 ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0)
464460, 463syl 14 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0)
465464ex 114 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝐴 gcd 𝑁) = 1 → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0))
466250, 465impbid 128 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0 ↔ (𝐴 gcd 𝑁) = 1))
46750, 101, 4663bitrd 213 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝐴 /L 𝑁) # 0 ↔ (𝐴 gcd 𝑁) = 1))
4684673expa 1193 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ((𝐴 /L 𝑁) # 0 ↔ (𝐴 gcd 𝑁) = 1))
46947, 468bitr3d 189 . 2 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ((𝐴 /L 𝑁) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1))
470 zdceq 9262 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
47160, 45, 470sylancl 410 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 = 0)
472 dcne 2346 . . 3 (DECID 𝑁 = 0 ↔ (𝑁 = 0 ∨ 𝑁 ≠ 0))
473471, 472sylib 121 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ∨ 𝑁 ≠ 0))
47442, 469, 473mpjaodan 788 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 /L 𝑁) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824  w3a 968   = wceq 1343  wcel 2136  wne 2335  wrex 2444  {crab 2447  cdif 3112  ifcif 3519  {csn 3575  {cpr 3576   class class class wbr 3981  cmpt 4042  wf 5183  cfv 5187  (class class class)co 5841  cc 7747  cr 7748  0cc0 7749  1c1 7750   + caddc 7752   · cmul 7754   < clt 7929  cle 7930  cmin 8065  -cneg 8066   # cap 8475   / cdiv 8564  cn 8853  2c2 8904  7c7 8909  8c8 8910  0cn0 9110  cz 9187  cuz 9462  cq 9553  ...cfz 9940   mod cmo 10253  seqcseq 10376  cexp 10450  abscabs 10935  cdvds 11723   gcd cgcd 11871  cprime 12035   pCnt cpc 12212   /L clgs 13498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868  ax-caucvg 7869
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-xor 1366  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-isom 5196  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-irdg 6334  df-frec 6355  df-1o 6380  df-2o 6381  df-oadd 6384  df-er 6497  df-en 6703  df-dom 6704  df-fin 6705  df-sup 6945  df-inf 6946  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-5 8915  df-6 8916  df-7 8917  df-8 8918  df-n0 9111  df-z 9188  df-uz 9463  df-q 9554  df-rp 9586  df-fz 9941  df-fzo 10074  df-fl 10201  df-mod 10254  df-seqfrec 10377  df-exp 10451  df-ihash 10685  df-cj 10780  df-re 10781  df-im 10782  df-rsqrt 10936  df-abs 10937  df-clim 11216  df-proddc 11488  df-dvds 11724  df-gcd 11872  df-prm 12036  df-phi 12139  df-pc 12213  df-lgs 13499
This theorem is referenced by:  lgsabs1  13540  lgsprme0  13543  lgsdirnn0  13548
  Copyright terms: Public domain W3C validator