| Step | Hyp | Ref
 | Expression | 
| 1 |   | zsqcl 10702 | 
. . . . . . . . 9
⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈
ℤ) | 
| 2 | 1 | adantr 276 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴↑2) ∈
ℤ) | 
| 3 |   | 1z 9352 | 
. . . . . . . 8
⊢ 1 ∈
ℤ | 
| 4 |   | zdceq 9401 | 
. . . . . . . 8
⊢ (((𝐴↑2) ∈ ℤ ∧ 1
∈ ℤ) → DECID (𝐴↑2) = 1) | 
| 5 | 2, 3, 4 | sylancl 413 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID (𝐴↑2) = 1) | 
| 6 |   | iffalse 3569 | 
. . . . . . . . 9
⊢ (¬
(𝐴↑2) = 1 →
if((𝐴↑2) = 1, 1, 0) =
0) | 
| 7 | 6 | a1i 9 | 
. . . . . . . 8
⊢
(DECID (𝐴↑2) = 1 → (¬ (𝐴↑2) = 1 → if((𝐴↑2) = 1, 1, 0) =
0)) | 
| 8 | 7 | necon1aidc 2418 | 
. . . . . . 7
⊢
(DECID (𝐴↑2) = 1 → (if((𝐴↑2) = 1, 1, 0) ≠ 0 → (𝐴↑2) = 1)) | 
| 9 | 5, 8 | syl 14 | 
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(if((𝐴↑2) = 1, 1, 0)
≠ 0 → (𝐴↑2) =
1)) | 
| 10 |   | iftrue 3566 | 
. . . . . . 7
⊢ ((𝐴↑2) = 1 → if((𝐴↑2) = 1, 1, 0) =
1) | 
| 11 |   | 1ne0 9058 | 
. . . . . . . 8
⊢ 1 ≠
0 | 
| 12 | 11 | a1i 9 | 
. . . . . . 7
⊢ ((𝐴↑2) = 1 → 1 ≠
0) | 
| 13 | 10, 12 | eqnetrd 2391 | 
. . . . . 6
⊢ ((𝐴↑2) = 1 → if((𝐴↑2) = 1, 1, 0) ≠
0) | 
| 14 | 9, 13 | impbid1 142 | 
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(if((𝐴↑2) = 1, 1, 0)
≠ 0 ↔ (𝐴↑2) =
1)) | 
| 15 | 14 | adantr 276 | 
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (if((𝐴↑2) = 1, 1, 0) ≠ 0
↔ (𝐴↑2) =
1)) | 
| 16 |   | zre 9330 | 
. . . . . . 7
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℝ) | 
| 17 | 16 | ad2antrr 488 | 
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → 𝐴 ∈ ℝ) | 
| 18 |   | absresq 11243 | 
. . . . . 6
⊢ (𝐴 ∈ ℝ →
((abs‘𝐴)↑2) =
(𝐴↑2)) | 
| 19 | 17, 18 | syl 14 | 
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((abs‘𝐴)↑2) = (𝐴↑2)) | 
| 20 |   | sq1 10725 | 
. . . . . 6
⊢
(1↑2) = 1 | 
| 21 | 20 | a1i 9 | 
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (1↑2) =
1) | 
| 22 | 19, 21 | eqeq12d 2211 | 
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (((abs‘𝐴)↑2) = (1↑2) ↔
(𝐴↑2) =
1)) | 
| 23 | 17 | recnd 8055 | 
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → 𝐴 ∈ ℂ) | 
| 24 | 23 | abscld 11346 | 
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (abs‘𝐴) ∈
ℝ) | 
| 25 | 23 | absge0d 11349 | 
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → 0 ≤
(abs‘𝐴)) | 
| 26 |   | 1re 8025 | 
. . . . . 6
⊢ 1 ∈
ℝ | 
| 27 |   | 0le1 8508 | 
. . . . . 6
⊢ 0 ≤
1 | 
| 28 |   | sq11 10704 | 
. . . . . 6
⊢
((((abs‘𝐴)
∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ∧ (1 ∈ ℝ ∧ 0 ≤ 1))
→ (((abs‘𝐴)↑2) = (1↑2) ↔
(abs‘𝐴) =
1)) | 
| 29 | 26, 27, 28 | mpanr12 439 | 
. . . . 5
⊢
(((abs‘𝐴)
∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → (((abs‘𝐴)↑2) = (1↑2) ↔
(abs‘𝐴) =
1)) | 
| 30 | 24, 25, 29 | syl2anc 411 | 
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (((abs‘𝐴)↑2) = (1↑2) ↔
(abs‘𝐴) =
1)) | 
| 31 | 15, 22, 30 | 3bitr2d 216 | 
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (if((𝐴↑2) = 1, 1, 0) ≠ 0
↔ (abs‘𝐴) =
1)) | 
| 32 |   | oveq2 5930 | 
. . . . 5
⊢ (𝑁 = 0 → (𝐴 /L 𝑁) = (𝐴 /L 0)) | 
| 33 |   | lgs0 15254 | 
. . . . . 6
⊢ (𝐴 ∈ ℤ → (𝐴 /L 0) =
if((𝐴↑2) = 1, 1,
0)) | 
| 34 | 33 | adantr 276 | 
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 0) =
if((𝐴↑2) = 1, 1,
0)) | 
| 35 | 32, 34 | sylan9eqr 2251 | 
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L 𝑁) = if((𝐴↑2) = 1, 1, 0)) | 
| 36 | 35 | neeq1d 2385 | 
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝐴 /L 𝑁) ≠ 0 ↔ if((𝐴↑2) = 1, 1, 0) ≠
0)) | 
| 37 |   | oveq2 5930 | 
. . . . 5
⊢ (𝑁 = 0 → (𝐴 gcd 𝑁) = (𝐴 gcd 0)) | 
| 38 |   | gcdid0 12147 | 
. . . . . 6
⊢ (𝐴 ∈ ℤ → (𝐴 gcd 0) = (abs‘𝐴)) | 
| 39 | 38 | adantr 276 | 
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 gcd 0) = (abs‘𝐴)) | 
| 40 | 37, 39 | sylan9eqr 2251 | 
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 gcd 𝑁) = (abs‘𝐴)) | 
| 41 | 40 | eqeq1d 2205 | 
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝐴 gcd 𝑁) = 1 ↔ (abs‘𝐴) = 1)) | 
| 42 | 31, 36, 41 | 3bitr4d 220 | 
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → ((𝐴 /L 𝑁) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1)) | 
| 43 |   | lgscl 15255 | 
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈
ℤ) | 
| 44 | 43 | adantr 276 | 
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) ∈
ℤ) | 
| 45 |   | 0z 9337 | 
. . . 4
⊢ 0 ∈
ℤ | 
| 46 |   | zapne 9400 | 
. . . 4
⊢ (((𝐴 /L 𝑁) ∈ ℤ ∧ 0 ∈
ℤ) → ((𝐴
/L 𝑁) # 0
↔ (𝐴
/L 𝑁)
≠ 0)) | 
| 47 | 44, 45, 46 | sylancl 413 | 
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ((𝐴 /L 𝑁) # 0 ↔ (𝐴 /L 𝑁) ≠ 0)) | 
| 48 |   | eqid 2196 | 
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) | 
| 49 | 48 | lgsval4 15261 | 
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))) | 
| 50 | 49 | breq1d 4043 | 
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝐴 /L 𝑁) # 0 ↔ (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) # 0)) | 
| 51 |   | simpr 110 | 
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 < 0 ∧ 𝐴 < 0)) → (𝑁 < 0 ∧ 𝐴 < 0)) | 
| 52 | 51 | iftrued 3568 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 < 0 ∧ 𝐴 < 0)) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = -1) | 
| 53 |   | neg1ne0 9097 | 
. . . . . . . . . . . 12
⊢ -1 ≠
0 | 
| 54 | 53 | a1i 9 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 < 0 ∧ 𝐴 < 0)) → -1 ≠ 0) | 
| 55 | 52, 54 | eqnetrd 2391 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 < 0 ∧ 𝐴 < 0)) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ≠ 0) | 
| 56 |   | simpr 110 | 
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑁 < 0 ∧ 𝐴 < 0)) → ¬ (𝑁 < 0 ∧ 𝐴 < 0)) | 
| 57 | 56 | iffalsed 3571 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑁 < 0 ∧ 𝐴 < 0)) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1) | 
| 58 | 11 | a1i 9 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑁 < 0 ∧ 𝐴 < 0)) → 1 ≠
0) | 
| 59 | 57, 58 | eqnetrd 2391 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑁 < 0 ∧ 𝐴 < 0)) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ≠ 0) | 
| 60 |   | simpr 110 | 
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈
ℤ) | 
| 61 |   | zdclt 9403 | 
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑁 < 0) | 
| 62 | 60, 45, 61 | sylancl 413 | 
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID 𝑁 <
0) | 
| 63 |   | simpl 109 | 
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈
ℤ) | 
| 64 |   | zdclt 9403 | 
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝐴 < 0) | 
| 65 | 63, 45, 64 | sylancl 413 | 
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID 𝐴 <
0) | 
| 66 |   | dcan2 936 | 
. . . . . . . . . . . 12
⊢
(DECID 𝑁 < 0 → (DECID 𝐴 < 0 →
DECID (𝑁
< 0 ∧ 𝐴 <
0))) | 
| 67 | 62, 65, 66 | sylc 62 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID (𝑁
< 0 ∧ 𝐴 <
0)) | 
| 68 |   | exmiddc 837 | 
. . . . . . . . . . 11
⊢
(DECID (𝑁 < 0 ∧ 𝐴 < 0) → ((𝑁 < 0 ∧ 𝐴 < 0) ∨ ¬ (𝑁 < 0 ∧ 𝐴 < 0))) | 
| 69 | 67, 68 | syl 14 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 < 0 ∧ 𝐴 < 0) ∨ ¬ (𝑁 < 0 ∧ 𝐴 < 0))) | 
| 70 | 55, 59, 69 | mpjaodan 799 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ≠
0) | 
| 71 | 70 | biantrurd 305 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((seq1(
· , (𝑛 ∈
ℕ ↦ if(𝑛 ∈
ℙ, ((𝐴
/L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0 ↔ (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ≠ 0 ∧ (seq1(
· , (𝑛 ∈
ℕ ↦ if(𝑛 ∈
ℙ, ((𝐴
/L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0))) | 
| 72 | 71 | 3adant3 1019 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((seq1( ·
, (𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0 ↔ (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ≠ 0 ∧ (seq1(
· , (𝑛 ∈
ℕ ↦ if(𝑛 ∈
ℙ, ((𝐴
/L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0))) | 
| 73 |   | neg1z 9358 | 
. . . . . . . . . . . . 13
⊢ -1 ∈
ℤ | 
| 74 | 73 | a1i 9 | 
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → -1
∈ ℤ) | 
| 75 |   | 1zzd 9353 | 
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈
ℤ) | 
| 76 | 74, 75, 67 | ifcldcd 3597 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈
ℤ) | 
| 77 | 76 | 3adant3 1019 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈
ℤ) | 
| 78 | 77 | zcnd 9449 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈
ℂ) | 
| 79 |   | nnuz 9637 | 
. . . . . . . . . . . 12
⊢ ℕ =
(ℤ≥‘1) | 
| 80 |   | 1zzd 9353 | 
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 1 ∈
ℤ) | 
| 81 | 48 | lgsfcl3 15262 | 
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)),
1)):ℕ⟶ℤ) | 
| 82 | 81 | ffvelcdmda 5697 | 
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ) | 
| 83 |   | zmulcl 9379 | 
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑘 · 𝑥) ∈ ℤ) | 
| 84 | 83 | adantl 277 | 
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑘 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝑘 · 𝑥) ∈ ℤ) | 
| 85 | 79, 80, 82, 84 | seqf 10556 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)),
1))):ℕ⟶ℤ) | 
| 86 |   | nnabscl 11265 | 
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈
ℕ) | 
| 87 | 86 | 3adant1 1017 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈
ℕ) | 
| 88 | 85, 87 | ffvelcdmd 5698 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (seq1( ·
, (𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℤ) | 
| 89 | 88 | zcnd 9449 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (seq1( ·
, (𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ) | 
| 90 | 78, 89 | mulap0bd 8684 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) # 0 ∧ (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0) ↔ (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) # 0)) | 
| 91 |   | zapne 9400 | 
. . . . . . . . . 10
⊢
((if((𝑁 < 0 ∧
𝐴 < 0), -1, 1) ∈
ℤ ∧ 0 ∈ ℤ) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) # 0 ↔ if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ≠ 0)) | 
| 92 | 77, 45, 91 | sylancl 413 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) # 0 ↔ if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ≠ 0)) | 
| 93 |   | zapne 9400 | 
. . . . . . . . . 10
⊢ (((seq1(
· , (𝑛 ∈
ℕ ↦ if(𝑛 ∈
ℙ, ((𝐴
/L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℤ ∧ 0 ∈ ℤ)
→ ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0 ↔ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0)) | 
| 94 | 88, 45, 93 | sylancl 413 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((seq1( ·
, (𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0 ↔ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0)) | 
| 95 | 92, 94 | anbi12d 473 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) # 0 ∧ (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0) ↔ (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ≠ 0 ∧ (seq1(
· , (𝑛 ∈
ℕ ↦ if(𝑛 ∈
ℙ, ((𝐴
/L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0))) | 
| 96 | 77, 88 | zmulcld 9454 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) ∈ ℤ) | 
| 97 |   | zapne 9400 | 
. . . . . . . . 9
⊢
(((if((𝑁 < 0
∧ 𝐴 < 0), -1, 1)
· (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) ∈ ℤ ∧ 0 ∈ ℤ)
→ ((if((𝑁 < 0 ∧
𝐴 < 0), -1, 1) ·
(seq1( · , (𝑛 ∈
ℕ ↦ if(𝑛 ∈
ℙ, ((𝐴
/L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) # 0 ↔ (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) ≠ 0)) | 
| 98 | 96, 45, 97 | sylancl 413 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) # 0 ↔ (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) ≠ 0)) | 
| 99 | 90, 95, 98 | 3bitr3d 218 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ≠ 0 ∧ (seq1(
· , (𝑛 ∈
ℕ ↦ if(𝑛 ∈
ℙ, ((𝐴
/L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0) ↔ (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) ≠ 0)) | 
| 100 | 72, 99 | bitr2d 189 | 
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) ≠ 0 ↔ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0)) | 
| 101 | 100, 98, 94 | 3bitr4d 220 | 
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) # 0 ↔ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0)) | 
| 102 |   | gcd2n0cl 12136 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 gcd 𝑁) ∈ ℕ) | 
| 103 | 102 | nnzd 9447 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 gcd 𝑁) ∈ ℤ) | 
| 104 |   | zdceq 9401 | 
. . . . . . . . 9
⊢ (((𝐴 gcd 𝑁) ∈ ℤ ∧ 1 ∈ ℤ)
→ DECID (𝐴 gcd 𝑁) = 1) | 
| 105 | 103, 3, 104 | sylancl 413 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) →
DECID (𝐴 gcd
𝑁) = 1) | 
| 106 |   | eluz2b3 9678 | 
. . . . . . . . . . . . 13
⊢ ((𝐴 gcd 𝑁) ∈ (ℤ≥‘2)
↔ ((𝐴 gcd 𝑁) ∈ ℕ ∧ (𝐴 gcd 𝑁) ≠ 1)) | 
| 107 |   | exprmfct 12306 | 
. . . . . . . . . . . . 13
⊢ ((𝐴 gcd 𝑁) ∈ (ℤ≥‘2)
→ ∃𝑝 ∈
ℙ 𝑝 ∥ (𝐴 gcd 𝑁)) | 
| 108 | 106, 107 | sylbir 135 | 
. . . . . . . . . . . 12
⊢ (((𝐴 gcd 𝑁) ∈ ℕ ∧ (𝐴 gcd 𝑁) ≠ 1) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝑁)) | 
| 109 |   | mulcl 8006 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ) | 
| 110 | 109 | adantl 277 | 
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ) | 
| 111 | 81 | ad2antrr 488 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑘 ∈ (ℤ≥‘1))
→ (𝑛 ∈ ℕ
↦ if(𝑛 ∈
ℙ, ((𝐴
/L 𝑛)↑(𝑛 pCnt 𝑁)),
1)):ℕ⟶ℤ) | 
| 112 |   | elnnuz 9638 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈
(ℤ≥‘1)) | 
| 113 | 112 | biimpri 133 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈
(ℤ≥‘1) → 𝑘 ∈ ℕ) | 
| 114 | 113 | adantl 277 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑘 ∈ (ℤ≥‘1))
→ 𝑘 ∈
ℕ) | 
| 115 | 111, 114 | ffvelcdmd 5698 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑘 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ if(𝑛 ∈
ℙ, ((𝐴
/L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ) | 
| 116 | 115 | zcnd 9449 | 
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑘 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ if(𝑛 ∈
ℙ, ((𝐴
/L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℂ) | 
| 117 |   | mul02 8413 | 
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℂ → (0
· 𝑘) =
0) | 
| 118 | 117 | adantl 277 | 
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑘 ∈ ℂ) → (0 · 𝑘) = 0) | 
| 119 |   | mul01 8415 | 
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℂ → (𝑘 · 0) =
0) | 
| 120 | 119 | adantl 277 | 
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑘 ∈ ℂ) → (𝑘 · 0) = 0) | 
| 121 |   | simprr 531 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ∥ (𝐴 gcd 𝑁)) | 
| 122 |   | prmz 12279 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℤ) | 
| 123 | 122 | ad2antrl 490 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ∈ ℤ) | 
| 124 |   | simpl1 1002 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝐴 ∈ ℤ) | 
| 125 |   | simpl2 1003 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑁 ∈ ℤ) | 
| 126 |   | dvdsgcdb 12180 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝑁) ↔ 𝑝 ∥ (𝐴 gcd 𝑁))) | 
| 127 | 123, 124,
125, 126 | syl3anc 1249 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → ((𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝑁) ↔ 𝑝 ∥ (𝐴 gcd 𝑁))) | 
| 128 | 121, 127 | mpbird 167 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝑁)) | 
| 129 | 128 | simprd 114 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ∥ 𝑁) | 
| 130 |   | dvdsabsb 11975 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑝 ∥ 𝑁 ↔ 𝑝 ∥ (abs‘𝑁))) | 
| 131 | 123, 125,
130 | syl2anc 411 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝 ∥ 𝑁 ↔ 𝑝 ∥ (abs‘𝑁))) | 
| 132 | 129, 131 | mpbid 147 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ∥ (abs‘𝑁)) | 
| 133 | 87 | adantr 276 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (abs‘𝑁) ∈ ℕ) | 
| 134 |   | dvdsle 12009 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑝 ∈ ℤ ∧
(abs‘𝑁) ∈
ℕ) → (𝑝 ∥
(abs‘𝑁) → 𝑝 ≤ (abs‘𝑁))) | 
| 135 | 123, 133,
134 | syl2anc 411 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝 ∥ (abs‘𝑁) → 𝑝 ≤ (abs‘𝑁))) | 
| 136 | 132, 135 | mpd 13 | 
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ≤ (abs‘𝑁)) | 
| 137 |   | prmnn 12278 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℕ) | 
| 138 | 137 | ad2antrl 490 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ∈ ℕ) | 
| 139 | 138, 79 | eleqtrdi 2289 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ∈
(ℤ≥‘1)) | 
| 140 | 133 | nnzd 9447 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (abs‘𝑁) ∈ ℤ) | 
| 141 |   | elfz5 10092 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ∈
(ℤ≥‘1) ∧ (abs‘𝑁) ∈ ℤ) → (𝑝 ∈ (1...(abs‘𝑁)) ↔ 𝑝 ≤ (abs‘𝑁))) | 
| 142 | 139, 140,
141 | syl2anc 411 | 
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝 ∈ (1...(abs‘𝑁)) ↔ 𝑝 ≤ (abs‘𝑁))) | 
| 143 | 136, 142 | mpbird 167 | 
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ∈ (1...(abs‘𝑁))) | 
| 144 |   | eleq1w 2257 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑝 → (𝑛 ∈ ℙ ↔ 𝑝 ∈ ℙ)) | 
| 145 |   | oveq2 5930 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑝 → (𝐴 /L 𝑛) = (𝐴 /L 𝑝)) | 
| 146 |   | oveq1 5929 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑝 → (𝑛 pCnt 𝑁) = (𝑝 pCnt 𝑁)) | 
| 147 | 145, 146 | oveq12d 5940 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑝 → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁))) | 
| 148 | 144, 147 | ifbieq1d 3583 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑝 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑝 ∈ ℙ, ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)), 1)) | 
| 149 |   | simprl 529 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ∈ ℙ) | 
| 150 | 149 | iftrued 3568 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → if(𝑝 ∈ ℙ, ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)), 1) = ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁))) | 
| 151 |   | lgscl 15255 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ℤ) → (𝐴 /L 𝑝) ∈
ℤ) | 
| 152 | 124, 123,
151 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝐴 /L 𝑝) ∈ ℤ) | 
| 153 |   | simpl3 1004 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑁 ≠ 0) | 
| 154 |   | pczcl 12467 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑝 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑝 pCnt 𝑁) ∈
ℕ0) | 
| 155 | 149, 125,
153, 154 | syl12anc 1247 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝 pCnt 𝑁) ∈
ℕ0) | 
| 156 |   | zexpcl 10646 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 /L 𝑝) ∈ ℤ ∧ (𝑝 pCnt 𝑁) ∈ ℕ0) → ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)) ∈ ℤ) | 
| 157 | 152, 155,
156 | syl2anc 411 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)) ∈ ℤ) | 
| 158 | 150, 157 | eqeltrd 2273 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → if(𝑝 ∈ ℙ, ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)), 1) ∈ ℤ) | 
| 159 | 48, 148, 138, 158 | fvmptd3 5655 | 
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑝) = if(𝑝 ∈ ℙ, ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)), 1)) | 
| 160 |   | oveq2 5930 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 = 2 → (𝐴 /L 𝑝) = (𝐴 /L 2)) | 
| 161 |   | lgs2 15258 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ ℤ → (𝐴 /L 2) = if(2
∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1,
-1))) | 
| 162 | 124, 161 | syl 14 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝐴 /L 2) = if(2 ∥
𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1,
-1))) | 
| 163 | 160, 162 | sylan9eqr 2251 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 = 2) → (𝐴 /L 𝑝) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1,
-1))) | 
| 164 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 = 2) → 𝑝 = 2) | 
| 165 | 128 | simpld 112 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑝 ∥ 𝐴) | 
| 166 | 165 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 = 2) → 𝑝 ∥ 𝐴) | 
| 167 | 164, 166 | eqbrtrrd 4057 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 = 2) → 2 ∥ 𝐴) | 
| 168 | 167 | iftrued 3568 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 = 2) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) =
0) | 
| 169 | 163, 168 | eqtrd 2229 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 = 2) → (𝐴 /L 𝑝) = 0) | 
| 170 |   | simpll1 1038 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝐴 ∈ ℤ) | 
| 171 | 149 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝑝 ∈ ℙ) | 
| 172 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝑝 ≠ 2) | 
| 173 |   | eldifsn 3749 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 ∈ (ℙ ∖ {2})
↔ (𝑝 ∈ ℙ
∧ 𝑝 ≠
2)) | 
| 174 | 171, 172,
173 | sylanbrc 417 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝑝 ∈ (ℙ ∖
{2})) | 
| 175 |   | lgsval3 15259 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ (ℙ ∖ {2}))
→ (𝐴
/L 𝑝) =
((((𝐴↑((𝑝 − 1) / 2)) + 1) mod 𝑝) − 1)) | 
| 176 | 170, 174,
175 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (𝐴 /L 𝑝) = ((((𝐴↑((𝑝 − 1) / 2)) + 1) mod 𝑝) − 1)) | 
| 177 |   | oddprm 12428 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑝 ∈ (ℙ ∖ {2})
→ ((𝑝 − 1) / 2)
∈ ℕ) | 
| 178 | 174, 177 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → ((𝑝 − 1) / 2) ∈
ℕ) | 
| 179 | 178 | nnnn0d 9302 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → ((𝑝 − 1) / 2) ∈
ℕ0) | 
| 180 |   | zexpcl 10646 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐴 ∈ ℤ ∧ ((𝑝 − 1) / 2) ∈
ℕ0) → (𝐴↑((𝑝 − 1) / 2)) ∈
ℤ) | 
| 181 | 170, 179,
180 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (𝐴↑((𝑝 − 1) / 2)) ∈
ℤ) | 
| 182 |   | zq 9700 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐴↑((𝑝 − 1) / 2)) ∈ ℤ →
(𝐴↑((𝑝 − 1) / 2)) ∈
ℚ) | 
| 183 | 181, 182 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (𝐴↑((𝑝 − 1) / 2)) ∈
ℚ) | 
| 184 |   | zq 9700 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (0 ∈
ℤ → 0 ∈ ℚ) | 
| 185 | 45, 184 | mp1i 10 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 0 ∈
ℚ) | 
| 186 |   | 1nn 9001 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 1 ∈
ℕ | 
| 187 |   | nnq 9707 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (1 ∈
ℕ → 1 ∈ ℚ) | 
| 188 | 186, 187 | mp1i 10 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 1 ∈
ℚ) | 
| 189 | 171, 137 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝑝 ∈ ℕ) | 
| 190 |   | nnq 9707 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑝 ∈ ℕ → 𝑝 ∈
ℚ) | 
| 191 | 189, 190 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝑝 ∈ ℚ) | 
| 192 |   | nngt0 9015 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑝 ∈ ℕ → 0 <
𝑝) | 
| 193 | 189, 192 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 0 < 𝑝) | 
| 194 |   | 0zd 9338 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 0 ∈
ℤ) | 
| 195 | 165 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝑝 ∥ 𝐴) | 
| 196 |   | dvdsval3 11956 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑝 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (𝑝 ∥ 𝐴 ↔ (𝐴 mod 𝑝) = 0)) | 
| 197 | 189, 170,
196 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (𝑝 ∥ 𝐴 ↔ (𝐴 mod 𝑝) = 0)) | 
| 198 | 195, 197 | mpbid 147 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (𝐴 mod 𝑝) = 0) | 
| 199 |   | q0mod 10447 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑝 ∈ ℚ ∧ 0 <
𝑝) → (0 mod 𝑝) = 0) | 
| 200 | 190, 192,
199 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑝 ∈ ℕ → (0 mod
𝑝) = 0) | 
| 201 | 189, 200 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (0 mod 𝑝) = 0) | 
| 202 | 198, 201 | eqtr4d 2232 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (𝐴 mod 𝑝) = (0 mod 𝑝)) | 
| 203 | 170, 194,
179, 191, 193, 202 | modqexp 10758 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → ((𝐴↑((𝑝 − 1) / 2)) mod 𝑝) = ((0↑((𝑝 − 1) / 2)) mod 𝑝)) | 
| 204 | 178 | 0expd 10781 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (0↑((𝑝 − 1) / 2)) = 0) | 
| 205 | 204 | oveq1d 5937 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → ((0↑((𝑝 − 1) / 2)) mod 𝑝) = (0 mod 𝑝)) | 
| 206 | 203, 205 | eqtrd 2229 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → ((𝐴↑((𝑝 − 1) / 2)) mod 𝑝) = (0 mod 𝑝)) | 
| 207 | 183, 185,
188, 191, 193, 206 | modqadd1 10453 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (((𝐴↑((𝑝 − 1) / 2)) + 1) mod 𝑝) = ((0 + 1) mod 𝑝)) | 
| 208 |   | 0p1e1 9104 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 + 1) =
1 | 
| 209 | 208 | oveq1i 5932 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((0 + 1)
mod 𝑝) = (1 mod 𝑝) | 
| 210 | 207, 209 | eqtrdi 2245 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (((𝐴↑((𝑝 − 1) / 2)) + 1) mod 𝑝) = (1 mod 𝑝)) | 
| 211 |   | prmuz2 12299 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
(ℤ≥‘2)) | 
| 212 | 171, 211 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → 𝑝 ∈
(ℤ≥‘2)) | 
| 213 |   | eluzelz 9610 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑝 ∈
(ℤ≥‘2) → 𝑝 ∈ ℤ) | 
| 214 |   | zq 9700 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑝 ∈ ℤ → 𝑝 ∈
ℚ) | 
| 215 | 213, 214 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑝 ∈
(ℤ≥‘2) → 𝑝 ∈ ℚ) | 
| 216 |   | eluz2gt1 9676 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑝 ∈
(ℤ≥‘2) → 1 < 𝑝) | 
| 217 |   | q1mod 10448 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑝 ∈ ℚ ∧ 1 <
𝑝) → (1 mod 𝑝) = 1) | 
| 218 | 215, 216,
217 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑝 ∈
(ℤ≥‘2) → (1 mod 𝑝) = 1) | 
| 219 | 212, 218 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (1 mod 𝑝) = 1) | 
| 220 | 210, 219 | eqtrd 2229 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (((𝐴↑((𝑝 − 1) / 2)) + 1) mod 𝑝) = 1) | 
| 221 | 220 | oveq1d 5937 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → ((((𝐴↑((𝑝 − 1) / 2)) + 1) mod 𝑝) − 1) = (1 −
1)) | 
| 222 |   | 1m1e0 9059 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (1
− 1) = 0 | 
| 223 | 221, 222 | eqtrdi 2245 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → ((((𝐴↑((𝑝 − 1) / 2)) + 1) mod 𝑝) − 1) = 0) | 
| 224 | 176, 223 | eqtrd 2229 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) ∧ 𝑝 ≠ 2) → (𝐴 /L 𝑝) = 0) | 
| 225 |   | 2z 9354 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℤ | 
| 226 |   | zdceq 9401 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑝 ∈ ℤ ∧ 2 ∈
ℤ) → DECID 𝑝 = 2) | 
| 227 | 123, 225,
226 | sylancl 413 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → DECID 𝑝 = 2) | 
| 228 |   | dcne 2378 | 
. . . . . . . . . . . . . . . . . . 19
⊢
(DECID 𝑝 = 2 ↔ (𝑝 = 2 ∨ 𝑝 ≠ 2)) | 
| 229 | 227, 228 | sylib 122 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝 = 2 ∨ 𝑝 ≠ 2)) | 
| 230 | 169, 224,
229 | mpjaodan 799 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝐴 /L 𝑝) = 0) | 
| 231 | 230 | oveq1d 5937 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)) = (0↑(𝑝 pCnt 𝑁))) | 
| 232 |   | zq 9700 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℚ) | 
| 233 | 125, 232 | syl 14 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → 𝑁 ∈ ℚ) | 
| 234 |   | pcabs 12495 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑝 pCnt (abs‘𝑁)) = (𝑝 pCnt 𝑁)) | 
| 235 | 149, 233,
234 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝 pCnt (abs‘𝑁)) = (𝑝 pCnt 𝑁)) | 
| 236 |   | pcelnn 12490 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑝 ∈ ℙ ∧
(abs‘𝑁) ∈
ℕ) → ((𝑝 pCnt
(abs‘𝑁)) ∈
ℕ ↔ 𝑝 ∥
(abs‘𝑁))) | 
| 237 | 149, 133,
236 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → ((𝑝 pCnt (abs‘𝑁)) ∈ ℕ ↔ 𝑝 ∥ (abs‘𝑁))) | 
| 238 | 132, 237 | mpbird 167 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝 pCnt (abs‘𝑁)) ∈ ℕ) | 
| 239 | 235, 238 | eqeltrrd 2274 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (𝑝 pCnt 𝑁) ∈ ℕ) | 
| 240 | 239 | 0expd 10781 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (0↑(𝑝 pCnt 𝑁)) = 0) | 
| 241 | 231, 240 | eqtrd 2229 | 
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → ((𝐴 /L 𝑝)↑(𝑝 pCnt 𝑁)) = 0) | 
| 242 | 159, 150,
241 | 3eqtrd 2233 | 
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑝) = 0) | 
| 243 | 110, 116,
118, 120, 143, 242 | seq3z 10620 | 
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝐴 gcd 𝑁))) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = 0) | 
| 244 | 243 | rexlimdvaa 2615 | 
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝑁) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = 0)) | 
| 245 | 108, 244 | syl5 32 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (((𝐴 gcd 𝑁) ∈ ℕ ∧ (𝐴 gcd 𝑁) ≠ 1) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = 0)) | 
| 246 | 102, 245 | mpand 429 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝐴 gcd 𝑁) ≠ 1 → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = 0)) | 
| 247 | 246 | a1d 22 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) →
(DECID (𝐴
gcd 𝑁) = 1 → ((𝐴 gcd 𝑁) ≠ 1 → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = 0))) | 
| 248 | 247 | necon1ddc 2445 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) →
(DECID (𝐴
gcd 𝑁) = 1 → ((seq1(
· , (𝑛 ∈
ℕ ↦ if(𝑛 ∈
ℙ, ((𝐴
/L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0 → (𝐴 gcd 𝑁) = 1))) | 
| 249 | 105, 248 | mpd 13 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((seq1( ·
, (𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ≠ 0 → (𝐴 gcd 𝑁) = 1)) | 
| 250 | 94, 249 | sylbid 150 | 
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((seq1( ·
, (𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0 → (𝐴 gcd 𝑁) = 1)) | 
| 251 |   | 1zzd 9353 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) → 1 ∈
ℤ) | 
| 252 |   | eleq1w 2257 | 
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ)) | 
| 253 |   | oveq2 5930 | 
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑘 → (𝐴 /L 𝑛) = (𝐴 /L 𝑘)) | 
| 254 |   | oveq1 5929 | 
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑘 → (𝑛 pCnt 𝑁) = (𝑘 pCnt 𝑁)) | 
| 255 | 253, 254 | oveq12d 5940 | 
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁))) | 
| 256 | 252, 255 | ifbieq1d 3583 | 
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) | 
| 257 |   | simpr 110 | 
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | 
| 258 |   | simp1 999 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐴 ∈
ℤ) | 
| 259 | 258 | ad3antrrr 492 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ ℙ) → 𝐴 ∈ ℤ) | 
| 260 |   | prmz 12279 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℙ → 𝑘 ∈
ℤ) | 
| 261 | 260 | adantl 277 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℤ) | 
| 262 |   | lgscl 15255 | 
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐴 /L 𝑘) ∈
ℤ) | 
| 263 | 259, 261,
262 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℤ) | 
| 264 |   | simpr 110 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℙ) | 
| 265 |   | simp2 1000 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ∈
ℤ) | 
| 266 | 265 | ad3antrrr 492 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ ℙ) → 𝑁 ∈ ℤ) | 
| 267 |   | simp3 1001 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ≠ 0) | 
| 268 | 267 | ad3antrrr 492 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ ℙ) → 𝑁 ≠ 0) | 
| 269 |   | pczcl 12467 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑘 pCnt 𝑁) ∈
ℕ0) | 
| 270 | 264, 266,
268, 269 | syl12anc 1247 | 
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑁) ∈
ℕ0) | 
| 271 |   | zexpcl 10646 | 
. . . . . . . . . . . . . 14
⊢ (((𝐴 /L 𝑘) ∈ ℤ ∧ (𝑘 pCnt 𝑁) ∈ ℕ0) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ ℤ) | 
| 272 | 263, 270,
271 | syl2anc 411 | 
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ ℤ) | 
| 273 |   | 1zzd 9353 | 
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) ∧ ¬ 𝑘 ∈ ℙ) → 1 ∈
ℤ) | 
| 274 |   | prmdc 12298 | 
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ →
DECID 𝑘
∈ ℙ) | 
| 275 | 274 | adantl 277 | 
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) → DECID
𝑘 ∈
ℙ) | 
| 276 | 272, 273,
275 | ifcldadc 3590 | 
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ ℤ) | 
| 277 | 48, 256, 257, 276 | fvmptd3 5655 | 
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) | 
| 278 |   | simpll1 1038 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → 𝐴 ∈ ℤ) | 
| 279 | 260 | adantl 277 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℤ) | 
| 280 | 278, 279,
262 | syl2anc 411 | 
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℤ) | 
| 281 | 280 | zcnd 9449 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℂ) | 
| 282 | 281 | adantr 276 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) → (𝐴 /L 𝑘) ∈ ℂ) | 
| 283 |   | oveq2 5930 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 2 → (𝐴 /L 𝑘) = (𝐴 /L 2)) | 
| 284 | 278 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) → 𝐴 ∈ ℤ) | 
| 285 | 284, 161 | syl 14 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) → (𝐴 /L 2) = if(2 ∥
𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1,
-1))) | 
| 286 | 283, 285 | sylan9eqr 2251 | 
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 = 2) → (𝐴 /L 𝑘) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1,
-1))) | 
| 287 |   | nprmdvds1 12308 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 ∈ ℙ → ¬
𝑘 ∥
1) | 
| 288 | 287 | adantl 277 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ¬ 𝑘 ∥ 1) | 
| 289 |   | simpll2 1039 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → 𝑁 ∈ ℤ) | 
| 290 |   | dvdsgcdb 12180 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑘 ∥ 𝐴 ∧ 𝑘 ∥ 𝑁) ↔ 𝑘 ∥ (𝐴 gcd 𝑁))) | 
| 291 | 279, 278,
289, 290 | syl3anc 1249 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ((𝑘 ∥ 𝐴 ∧ 𝑘 ∥ 𝑁) ↔ 𝑘 ∥ (𝐴 gcd 𝑁))) | 
| 292 |   | simplr 528 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝐴 gcd 𝑁) = 1) | 
| 293 | 292 | breq2d 4045 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝑘 ∥ (𝐴 gcd 𝑁) ↔ 𝑘 ∥ 1)) | 
| 294 | 291, 293 | bitrd 188 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ((𝑘 ∥ 𝐴 ∧ 𝑘 ∥ 𝑁) ↔ 𝑘 ∥ 1)) | 
| 295 | 288, 294 | mtbird 674 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ¬ (𝑘 ∥ 𝐴 ∧ 𝑘 ∥ 𝑁)) | 
| 296 |   | imnan 691 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑘 ∥ 𝐴 → ¬ 𝑘 ∥ 𝑁) ↔ ¬ (𝑘 ∥ 𝐴 ∧ 𝑘 ∥ 𝑁)) | 
| 297 | 295, 296 | sylibr 134 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝑘 ∥ 𝐴 → ¬ 𝑘 ∥ 𝑁)) | 
| 298 | 297 | con2d 625 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝑘 ∥ 𝑁 → ¬ 𝑘 ∥ 𝐴)) | 
| 299 | 298 | imp 124 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) → ¬ 𝑘 ∥ 𝐴) | 
| 300 |   | breq1 4036 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 2 → (𝑘 ∥ 𝐴 ↔ 2 ∥ 𝐴)) | 
| 301 | 300 | notbid 668 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 2 → (¬ 𝑘 ∥ 𝐴 ↔ ¬ 2 ∥ 𝐴)) | 
| 302 | 299, 301 | syl5ibcom 155 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) → (𝑘 = 2 → ¬ 2 ∥ 𝐴)) | 
| 303 | 302 | imp 124 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 = 2) → ¬ 2 ∥ 𝐴) | 
| 304 | 303 | iffalsed 3571 | 
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 = 2) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) = if((𝐴 mod 8) ∈ {1, 7}, 1,
-1)) | 
| 305 | 286, 304 | eqtrd 2229 | 
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 = 2) → (𝐴 /L 𝑘) = if((𝐴 mod 8) ∈ {1, 7}, 1,
-1)) | 
| 306 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ ℤ ∧ (𝐴 mod 8) ∈ {1, 7}) →
(𝐴 mod 8) ∈ {1,
7}) | 
| 307 | 306 | iftrued 3568 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℤ ∧ (𝐴 mod 8) ∈ {1, 7}) →
if((𝐴 mod 8) ∈ {1, 7},
1, -1) = 1) | 
| 308 | 11 | a1i 9 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℤ ∧ (𝐴 mod 8) ∈ {1, 7}) → 1
≠ 0) | 
| 309 | 307, 308 | eqnetrd 2391 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℤ ∧ (𝐴 mod 8) ∈ {1, 7}) →
if((𝐴 mod 8) ∈ {1, 7},
1, -1) ≠ 0) | 
| 310 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ ℤ ∧ ¬
(𝐴 mod 8) ∈ {1, 7})
→ ¬ (𝐴 mod 8)
∈ {1, 7}) | 
| 311 | 310 | iffalsed 3571 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℤ ∧ ¬
(𝐴 mod 8) ∈ {1, 7})
→ if((𝐴 mod 8) ∈
{1, 7}, 1, -1) = -1) | 
| 312 | 53 | a1i 9 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℤ ∧ ¬
(𝐴 mod 8) ∈ {1, 7})
→ -1 ≠ 0) | 
| 313 | 311, 312 | eqnetrd 2391 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℤ ∧ ¬
(𝐴 mod 8) ∈ {1, 7})
→ if((𝐴 mod 8) ∈
{1, 7}, 1, -1) ≠ 0) | 
| 314 |   | 8nn 9158 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 8 ∈
ℕ | 
| 315 |   | zmodcl 10436 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐴 ∈ ℤ ∧ 8 ∈
ℕ) → (𝐴 mod 8)
∈ ℕ0) | 
| 316 | 314, 315 | mpan2 425 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐴 ∈ ℤ → (𝐴 mod 8) ∈
ℕ0) | 
| 317 | 316 | nn0zd 9446 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐴 ∈ ℤ → (𝐴 mod 8) ∈
ℤ) | 
| 318 |   | zdceq 9401 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐴 mod 8) ∈ ℤ ∧ 1
∈ ℤ) → DECID (𝐴 mod 8) = 1) | 
| 319 | 317, 3, 318 | sylancl 413 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 ∈ ℤ →
DECID (𝐴 mod
8) = 1) | 
| 320 |   | 7nn 9157 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 7 ∈
ℕ | 
| 321 | 320 | nnzi 9347 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 7 ∈
ℤ | 
| 322 |   | zdceq 9401 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐴 mod 8) ∈ ℤ ∧ 7
∈ ℤ) → DECID (𝐴 mod 8) = 7) | 
| 323 | 317, 321,
322 | sylancl 413 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 ∈ ℤ →
DECID (𝐴 mod
8) = 7) | 
| 324 |   | dcor 937 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(DECID (𝐴 mod 8) = 1 → (DECID
(𝐴 mod 8) = 7 →
DECID ((𝐴
mod 8) = 1 ∨ (𝐴 mod 8) =
7))) | 
| 325 | 319, 323,
324 | sylc 62 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐴 ∈ ℤ →
DECID ((𝐴
mod 8) = 1 ∨ (𝐴 mod 8) =
7)) | 
| 326 |   | elprg 3642 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐴 mod 8) ∈
ℕ0 → ((𝐴 mod 8) ∈ {1, 7} ↔ ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7))) | 
| 327 | 316, 326 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 ∈ ℤ → ((𝐴 mod 8) ∈ {1, 7} ↔
((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7))) | 
| 328 | 327 | dcbid 839 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐴 ∈ ℤ →
(DECID (𝐴
mod 8) ∈ {1, 7} ↔ DECID ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7))) | 
| 329 | 325, 328 | mpbird 167 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ ℤ →
DECID (𝐴 mod
8) ∈ {1, 7}) | 
| 330 |   | exmiddc 837 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(DECID (𝐴 mod 8) ∈ {1, 7} → ((𝐴 mod 8) ∈ {1, 7} ∨ ¬
(𝐴 mod 8) ∈ {1,
7})) | 
| 331 | 329, 330 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ ℤ → ((𝐴 mod 8) ∈ {1, 7} ∨ ¬
(𝐴 mod 8) ∈ {1,
7})) | 
| 332 | 309, 313,
331 | mpjaodan 799 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ ℤ → if((𝐴 mod 8) ∈ {1, 7}, 1, -1)
≠ 0) | 
| 333 | 258, 332 | syl 14 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if((𝐴 mod 8) ∈ {1, 7}, 1, -1)
≠ 0) | 
| 334 | 333 | ad4antr 494 | 
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 = 2) → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ≠
0) | 
| 335 | 305, 334 | eqnetrd 2391 | 
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 = 2) → (𝐴 /L 𝑘) ≠ 0) | 
| 336 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℙ) | 
| 337 | 336 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → 𝑘 ∈ ℙ) | 
| 338 | 337, 287 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → ¬ 𝑘 ∥ 1) | 
| 339 |   | simplr 528 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → 𝑘 ∥ 𝑁) | 
| 340 | 337, 260 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → 𝑘 ∈ ℤ) | 
| 341 | 284 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → 𝐴 ∈ ℤ) | 
| 342 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → 𝑘 ≠ 2) | 
| 343 |   | eldifsn 3749 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 ∈ (ℙ ∖ {2})
↔ (𝑘 ∈ ℙ
∧ 𝑘 ≠
2)) | 
| 344 | 337, 342,
343 | sylanbrc 417 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → 𝑘 ∈ (ℙ ∖
{2})) | 
| 345 |   | oddprm 12428 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 ∈ (ℙ ∖ {2})
→ ((𝑘 − 1) / 2)
∈ ℕ) | 
| 346 | 344, 345 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → ((𝑘 − 1) / 2) ∈
ℕ) | 
| 347 | 346 | nnnn0d 9302 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → ((𝑘 − 1) / 2) ∈
ℕ0) | 
| 348 |   | zexpcl 10646 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐴 ∈ ℤ ∧ ((𝑘 − 1) / 2) ∈
ℕ0) → (𝐴↑((𝑘 − 1) / 2)) ∈
ℤ) | 
| 349 | 341, 347,
348 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → (𝐴↑((𝑘 − 1) / 2)) ∈
ℤ) | 
| 350 | 289 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → 𝑁 ∈ ℤ) | 
| 351 |   | dvdsgcd 12179 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑘 ∈ ℤ ∧ (𝐴↑((𝑘 − 1) / 2)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑘 ∥ (𝐴↑((𝑘 − 1) / 2)) ∧ 𝑘 ∥ 𝑁) → 𝑘 ∥ ((𝐴↑((𝑘 − 1) / 2)) gcd 𝑁))) | 
| 352 | 340, 349,
350, 351 | syl3anc 1249 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → ((𝑘 ∥ (𝐴↑((𝑘 − 1) / 2)) ∧ 𝑘 ∥ 𝑁) → 𝑘 ∥ ((𝐴↑((𝑘 − 1) / 2)) gcd 𝑁))) | 
| 353 | 339, 352 | mpan2d 428 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → (𝑘 ∥ (𝐴↑((𝑘 − 1) / 2)) → 𝑘 ∥ ((𝐴↑((𝑘 − 1) / 2)) gcd 𝑁))) | 
| 354 | 341 | zcnd 9449 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → 𝐴 ∈ ℂ) | 
| 355 | 354, 347 | absexpd 11357 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → (abs‘(𝐴↑((𝑘 − 1) / 2))) = ((abs‘𝐴)↑((𝑘 − 1) / 2))) | 
| 356 | 355 | oveq1d 5937 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → ((abs‘(𝐴↑((𝑘 − 1) / 2))) gcd (abs‘𝑁)) = (((abs‘𝐴)↑((𝑘 − 1) / 2)) gcd (abs‘𝑁))) | 
| 357 |   | gcdabs 12155 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐴↑((𝑘 − 1) / 2)) ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((abs‘(𝐴↑((𝑘 − 1) / 2))) gcd
(abs‘𝑁)) = ((𝐴↑((𝑘 − 1) / 2)) gcd 𝑁)) | 
| 358 | 349, 350,
357 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → ((abs‘(𝐴↑((𝑘 − 1) / 2))) gcd (abs‘𝑁)) = ((𝐴↑((𝑘 − 1) / 2)) gcd 𝑁)) | 
| 359 |   | gcdabs 12155 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((abs‘𝐴) gcd
(abs‘𝑁)) = (𝐴 gcd 𝑁)) | 
| 360 | 341, 350,
359 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → ((abs‘𝐴) gcd (abs‘𝑁)) = (𝐴 gcd 𝑁)) | 
| 361 | 292 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → (𝐴 gcd 𝑁) = 1) | 
| 362 | 360, 361 | eqtrd 2229 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → ((abs‘𝐴) gcd (abs‘𝑁)) = 1) | 
| 363 | 299 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → ¬ 𝑘 ∥ 𝐴) | 
| 364 |   | dvds0 11971 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑘 ∈ ℤ → 𝑘 ∥ 0) | 
| 365 | 340, 364 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → 𝑘 ∥ 0) | 
| 366 |   | breq2 4037 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐴 = 0 → (𝑘 ∥ 𝐴 ↔ 𝑘 ∥ 0)) | 
| 367 | 365, 366 | syl5ibrcom 157 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → (𝐴 = 0 → 𝑘 ∥ 𝐴)) | 
| 368 | 367 | necon3bd 2410 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → (¬ 𝑘 ∥ 𝐴 → 𝐴 ≠ 0)) | 
| 369 | 363, 368 | mpd 13 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → 𝐴 ≠ 0) | 
| 370 |   | nnabscl 11265 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈
ℕ) | 
| 371 | 341, 369,
370 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → (abs‘𝐴) ∈ ℕ) | 
| 372 |   | simpll3 1040 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → 𝑁 ≠ 0) | 
| 373 | 289, 372,
86 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (abs‘𝑁) ∈
ℕ) | 
| 374 | 373 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → (abs‘𝑁) ∈ ℕ) | 
| 375 |   | rplpwr 12194 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((abs‘𝐴)
∈ ℕ ∧ (abs‘𝑁) ∈ ℕ ∧ ((𝑘 − 1) / 2) ∈ ℕ) →
(((abs‘𝐴) gcd
(abs‘𝑁)) = 1 →
(((abs‘𝐴)↑((𝑘 − 1) / 2)) gcd (abs‘𝑁)) = 1)) | 
| 376 | 371, 374,
346, 375 | syl3anc 1249 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → (((abs‘𝐴) gcd (abs‘𝑁)) = 1 → (((abs‘𝐴)↑((𝑘 − 1) / 2)) gcd (abs‘𝑁)) = 1)) | 
| 377 | 362, 376 | mpd 13 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → (((abs‘𝐴)↑((𝑘 − 1) / 2)) gcd (abs‘𝑁)) = 1) | 
| 378 | 356, 358,
377 | 3eqtr3d 2237 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → ((𝐴↑((𝑘 − 1) / 2)) gcd 𝑁) = 1) | 
| 379 | 378 | breq2d 4045 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → (𝑘 ∥ ((𝐴↑((𝑘 − 1) / 2)) gcd 𝑁) ↔ 𝑘 ∥ 1)) | 
| 380 | 353, 379 | sylibd 149 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → (𝑘 ∥ (𝐴↑((𝑘 − 1) / 2)) → 𝑘 ∥ 1)) | 
| 381 | 338, 380 | mtod 664 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → ¬ 𝑘 ∥ (𝐴↑((𝑘 − 1) / 2))) | 
| 382 |   | prmnn 12278 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ ℙ → 𝑘 ∈
ℕ) | 
| 383 | 382 | adantl 277 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℕ) | 
| 384 | 383 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → 𝑘 ∈ ℕ) | 
| 385 |   | dvdsval3 11956 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ ℕ ∧ (𝐴↑((𝑘 − 1) / 2)) ∈ ℤ) →
(𝑘 ∥ (𝐴↑((𝑘 − 1) / 2)) ↔ ((𝐴↑((𝑘 − 1) / 2)) mod 𝑘) = 0)) | 
| 386 | 384, 349,
385 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → (𝑘 ∥ (𝐴↑((𝑘 − 1) / 2)) ↔ ((𝐴↑((𝑘 − 1) / 2)) mod 𝑘) = 0)) | 
| 387 | 386 | necon3bbid 2407 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → (¬ 𝑘 ∥ (𝐴↑((𝑘 − 1) / 2)) ↔ ((𝐴↑((𝑘 − 1) / 2)) mod 𝑘) ≠ 0)) | 
| 388 | 381, 387 | mpbid 147 | 
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → ((𝐴↑((𝑘 − 1) / 2)) mod 𝑘) ≠ 0) | 
| 389 |   | lgsvalmod 15260 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℤ ∧ 𝑘 ∈ (ℙ ∖ {2}))
→ ((𝐴
/L 𝑘) mod
𝑘) = ((𝐴↑((𝑘 − 1) / 2)) mod 𝑘)) | 
| 390 | 341, 344,
389 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → ((𝐴 /L 𝑘) mod 𝑘) = ((𝐴↑((𝑘 − 1) / 2)) mod 𝑘)) | 
| 391 |   | nnq 9707 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℚ) | 
| 392 |   | nngt0 9015 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ ℕ → 0 <
𝑘) | 
| 393 |   | q0mod 10447 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ ℚ ∧ 0 <
𝑘) → (0 mod 𝑘) = 0) | 
| 394 | 391, 392,
393 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ℕ → (0 mod
𝑘) = 0) | 
| 395 | 384, 394 | syl 14 | 
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → (0 mod 𝑘) = 0) | 
| 396 | 388, 390,
395 | 3netr4d 2400 | 
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → ((𝐴 /L 𝑘) mod 𝑘) ≠ (0 mod 𝑘)) | 
| 397 |   | oveq1 5929 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 /L 𝑘) = 0 → ((𝐴 /L 𝑘) mod 𝑘) = (0 mod 𝑘)) | 
| 398 | 397 | necon3i 2415 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 /L 𝑘) mod 𝑘) ≠ (0 mod 𝑘) → (𝐴 /L 𝑘) ≠ 0) | 
| 399 | 396, 398 | syl 14 | 
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) ∧ 𝑘 ≠ 2) → (𝐴 /L 𝑘) ≠ 0) | 
| 400 | 279 | adantr 276 | 
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) → 𝑘 ∈ ℤ) | 
| 401 |   | zdceq 9401 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℤ ∧ 2 ∈
ℤ) → DECID 𝑘 = 2) | 
| 402 | 400, 225,
401 | sylancl 413 | 
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) → DECID 𝑘 = 2) | 
| 403 |   | dcne 2378 | 
. . . . . . . . . . . . . . . . . 18
⊢
(DECID 𝑘 = 2 ↔ (𝑘 = 2 ∨ 𝑘 ≠ 2)) | 
| 404 | 402, 403 | sylib 122 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) → (𝑘 = 2 ∨ 𝑘 ≠ 2)) | 
| 405 | 335, 399,
404 | mpjaodan 799 | 
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) → (𝐴 /L 𝑘) ≠ 0) | 
| 406 | 280 | adantr 276 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) → (𝐴 /L 𝑘) ∈ ℤ) | 
| 407 |   | zapne 9400 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 /L 𝑘) ∈ ℤ ∧ 0 ∈
ℤ) → ((𝐴
/L 𝑘) # 0
↔ (𝐴
/L 𝑘)
≠ 0)) | 
| 408 | 406, 45, 407 | sylancl 413 | 
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) → ((𝐴 /L 𝑘) # 0 ↔ (𝐴 /L 𝑘) ≠ 0)) | 
| 409 | 405, 408 | mpbird 167 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) → (𝐴 /L 𝑘) # 0) | 
| 410 | 336, 289,
372, 269 | syl12anc 1247 | 
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑁) ∈
ℕ0) | 
| 411 | 410 | nn0zd 9446 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑁) ∈ ℤ) | 
| 412 | 411 | adantr 276 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) → (𝑘 pCnt 𝑁) ∈ ℤ) | 
| 413 |   | expclzaplem 10655 | 
. . . . . . . . . . . . . . 15
⊢ (((𝐴 /L 𝑘) ∈ ℂ ∧ (𝐴 /L 𝑘) # 0 ∧ (𝑘 pCnt 𝑁) ∈ ℤ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) | 
| 414 | 282, 409,
412, 413 | syl3anc 1249 | 
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ 𝑘 ∥ 𝑁) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) | 
| 415 |   | dvdsabsb 11975 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∥ 𝑁 ↔ 𝑘 ∥ (abs‘𝑁))) | 
| 416 | 279, 289,
415 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝑘 ∥ 𝑁 ↔ 𝑘 ∥ (abs‘𝑁))) | 
| 417 | 416 | notbid 668 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (¬ 𝑘 ∥ 𝑁 ↔ ¬ 𝑘 ∥ (abs‘𝑁))) | 
| 418 |   | pceq0 12491 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℙ ∧
(abs‘𝑁) ∈
ℕ) → ((𝑘 pCnt
(abs‘𝑁)) = 0 ↔
¬ 𝑘 ∥
(abs‘𝑁))) | 
| 419 | 336, 373,
418 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ((𝑘 pCnt (abs‘𝑁)) = 0 ↔ ¬ 𝑘 ∥ (abs‘𝑁))) | 
| 420 | 289, 232 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → 𝑁 ∈ ℚ) | 
| 421 |   | pcabs 12495 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑘 pCnt (abs‘𝑁)) = (𝑘 pCnt 𝑁)) | 
| 422 | 336, 420,
421 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt (abs‘𝑁)) = (𝑘 pCnt 𝑁)) | 
| 423 | 422 | eqeq1d 2205 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ((𝑘 pCnt (abs‘𝑁)) = 0 ↔ (𝑘 pCnt 𝑁) = 0)) | 
| 424 | 417, 419,
423 | 3bitr2rd 217 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ((𝑘 pCnt 𝑁) = 0 ↔ ¬ 𝑘 ∥ 𝑁)) | 
| 425 | 424 | biimpar 297 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ ¬ 𝑘 ∥ 𝑁) → (𝑘 pCnt 𝑁) = 0) | 
| 426 | 425 | oveq2d 5938 | 
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ ¬ 𝑘 ∥ 𝑁) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) = ((𝐴 /L 𝑘)↑0)) | 
| 427 | 281 | adantr 276 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ ¬ 𝑘 ∥ 𝑁) → (𝐴 /L 𝑘) ∈ ℂ) | 
| 428 | 427 | exp0d 10759 | 
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ ¬ 𝑘 ∥ 𝑁) → ((𝐴 /L 𝑘)↑0) = 1) | 
| 429 | 426, 428 | eqtrd 2229 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ ¬ 𝑘 ∥ 𝑁) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) = 1) | 
| 430 |   | ax-1cn 7972 | 
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℂ | 
| 431 |   | 1ap0 8617 | 
. . . . . . . . . . . . . . . 16
⊢ 1 #
0 | 
| 432 |   | breq1 4036 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 1 → (𝑥 # 0 ↔ 1 # 0)) | 
| 433 | 432 | elrab 2920 | 
. . . . . . . . . . . . . . . 16
⊢ (1 ∈
{𝑥 ∈ ℂ ∣
𝑥 # 0} ↔ (1 ∈
ℂ ∧ 1 # 0)) | 
| 434 | 430, 431,
433 | mpbir2an 944 | 
. . . . . . . . . . . . . . 15
⊢ 1 ∈
{𝑥 ∈ ℂ ∣
𝑥 # 0} | 
| 435 | 429, 434 | eqeltrdi 2287 | 
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) ∧ ¬ 𝑘 ∥ 𝑁) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) | 
| 436 |   | dvdsdc 11963 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ ∧ 𝑁 ∈ ℤ) →
DECID 𝑘
∥ 𝑁) | 
| 437 | 383, 289,
436 | syl2anc 411 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → DECID
𝑘 ∥ 𝑁) | 
| 438 |   | exmiddc 837 | 
. . . . . . . . . . . . . . 15
⊢
(DECID 𝑘 ∥ 𝑁 → (𝑘 ∥ 𝑁 ∨ ¬ 𝑘 ∥ 𝑁)) | 
| 439 | 437, 438 | syl 14 | 
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → (𝑘 ∥ 𝑁 ∨ ¬ 𝑘 ∥ 𝑁)) | 
| 440 | 414, 435,
439 | mpjaodan 799 | 
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) | 
| 441 | 440 | adantlr 477 | 
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) | 
| 442 | 434 | a1i 9 | 
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) ∧ ¬ 𝑘 ∈ ℙ) → 1 ∈
{𝑥 ∈ ℂ ∣
𝑥 # 0}) | 
| 443 | 441, 442,
275 | ifcldadc 3590 | 
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) | 
| 444 | 277, 443 | eqeltrd 2273 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) | 
| 445 |   | breq1 4036 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑘 → (𝑥 # 0 ↔ 𝑘 # 0)) | 
| 446 | 445 | elrab 2920 | 
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑘 ∈ ℂ ∧ 𝑘 # 0)) | 
| 447 |   | breq1 4036 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (𝑥 # 0 ↔ 𝑦 # 0)) | 
| 448 | 447 | elrab 2920 | 
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) | 
| 449 |   | mulcl 8006 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑘 · 𝑦) ∈ ℂ) | 
| 450 | 449 | ad2ant2r 509 | 
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℂ ∧ 𝑘 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑘 · 𝑦) ∈ ℂ) | 
| 451 |   | mulap0 8681 | 
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℂ ∧ 𝑘 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑘 · 𝑦) # 0) | 
| 452 | 450, 451 | jca 306 | 
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℂ ∧ 𝑘 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → ((𝑘 · 𝑦) ∈ ℂ ∧ (𝑘 · 𝑦) # 0)) | 
| 453 | 446, 448,
452 | syl2anb 291 | 
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑦 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → ((𝑘 · 𝑦) ∈ ℂ ∧ (𝑘 · 𝑦) # 0)) | 
| 454 |   | breq1 4036 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑘 · 𝑦) → (𝑥 # 0 ↔ (𝑘 · 𝑦) # 0)) | 
| 455 | 454 | elrab 2920 | 
. . . . . . . . . . . 12
⊢ ((𝑘 · 𝑦) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ ((𝑘 · 𝑦) ∈ ℂ ∧ (𝑘 · 𝑦) # 0)) | 
| 456 | 453, 455 | sylibr 134 | 
. . . . . . . . . . 11
⊢ ((𝑘 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑦 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) → (𝑘 · 𝑦) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) | 
| 457 | 456 | adantl 277 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) ∧ (𝑘 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ∧ 𝑦 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0})) → (𝑘 · 𝑦) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) | 
| 458 | 79, 251, 444, 457 | seqf 10556 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))):ℕ⟶{𝑥 ∈ ℂ ∣ 𝑥 # 0}) | 
| 459 | 87 | adantr 276 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) → (abs‘𝑁) ∈ ℕ) | 
| 460 | 458, 459 | ffvelcdmd 5698 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0}) | 
| 461 |   | breq1 4036 | 
. . . . . . . . . 10
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) → (𝑥 # 0 ↔ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0)) | 
| 462 | 461 | elrab 2920 | 
. . . . . . . . 9
⊢ ((seq1(
· , (𝑛 ∈
ℕ ↦ if(𝑛 ∈
ℙ, ((𝐴
/L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↔ ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ ∧ (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0)) | 
| 463 | 462 | simprbi 275 | 
. . . . . . . 8
⊢ ((seq1(
· , (𝑛 ∈
ℕ ↦ if(𝑛 ∈
ℙ, ((𝐴
/L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0) | 
| 464 | 460, 463 | syl 14 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐴 gcd 𝑁) = 1) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0) | 
| 465 | 464 | ex 115 | 
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝐴 gcd 𝑁) = 1 → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0)) | 
| 466 | 250, 465 | impbid 129 | 
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((seq1( ·
, (𝑛 ∈ ℕ ↦
if(𝑛 ∈ ℙ,
((𝐴 /L
𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) # 0 ↔ (𝐴 gcd 𝑁) = 1)) | 
| 467 | 50, 101, 466 | 3bitrd 214 | 
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝐴 /L 𝑁) # 0 ↔ (𝐴 gcd 𝑁) = 1)) | 
| 468 | 467 | 3expa 1205 | 
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ((𝐴 /L 𝑁) # 0 ↔ (𝐴 gcd 𝑁) = 1)) | 
| 469 | 47, 468 | bitr3d 190 | 
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ((𝐴 /L 𝑁) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1)) | 
| 470 |   | zdceq 9401 | 
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑁 = 0) | 
| 471 | 60, 45, 470 | sylancl 413 | 
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID 𝑁 =
0) | 
| 472 |   | dcne 2378 | 
. . 3
⊢
(DECID 𝑁 = 0 ↔ (𝑁 = 0 ∨ 𝑁 ≠ 0)) | 
| 473 | 471, 472 | sylib 122 | 
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ∨ 𝑁 ≠ 0)) | 
| 474 | 42, 469, 473 | mpjaodan 799 | 
1
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 /L 𝑁) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1)) |