ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modsumfzodifsn GIF version

Theorem modsumfzodifsn 10010
Description: The sum of a number within a half-open range of positive integers is an element of the corresponding open range of nonnegative integers with one excluded integer modulo the excluded integer. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
modsumfzodifsn ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))

Proof of Theorem modsumfzodifsn
StepHypRef Expression
1 elfzoelz 9765 . . . . . . . 8 (𝐾 ∈ (1..^𝑁) → 𝐾 ∈ ℤ)
21adantl 273 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℤ)
3 zq 9268 . . . . . . 7 (𝐾 ∈ ℤ → 𝐾 ∈ ℚ)
42, 3syl 14 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℚ)
5 elfzo0 9800 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) ↔ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
65biimpi 119 . . . . . . . . . 10 (𝐽 ∈ (0..^𝑁) → (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
76adantr 272 . . . . . . . . 9 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
87simp1d 961 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℕ0)
98nn0zd 9023 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℤ)
10 zq 9268 . . . . . . 7 (𝐽 ∈ ℤ → 𝐽 ∈ ℚ)
119, 10syl 14 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℚ)
12 qaddcl 9277 . . . . . 6 ((𝐾 ∈ ℚ ∧ 𝐽 ∈ ℚ) → (𝐾 + 𝐽) ∈ ℚ)
134, 11, 12syl2anc 406 . . . . 5 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℚ)
1413adantr 272 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ ℚ)
157simp2d 962 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℕ)
16 nnq 9275 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
1715, 16syl 14 . . . . 5 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℚ)
1817adantr 272 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℚ)
19 elfzo1 9808 . . . . . . . . . . 11 (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2019biimpi 119 . . . . . . . . . 10 (𝐾 ∈ (1..^𝑁) → (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2120adantl 273 . . . . . . . . 9 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2221simp1d 961 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℕ)
2322nnnn0d 8882 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℕ0)
2423, 8nn0addcld 8886 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℕ0)
2524nn0ge0d 8885 . . . . 5 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 0 ≤ (𝐾 + 𝐽))
2625adantr 272 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → 0 ≤ (𝐾 + 𝐽))
27 simpr 109 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) < 𝑁)
28 modqid 9963 . . . 4 ((((𝐾 + 𝐽) ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (0 ≤ (𝐾 + 𝐽) ∧ (𝐾 + 𝐽) < 𝑁)) → ((𝐾 + 𝐽) mod 𝑁) = (𝐾 + 𝐽))
2914, 18, 26, 27, 28syl22anc 1185 . . 3 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) mod 𝑁) = (𝐾 + 𝐽))
3024adantr 272 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ ℕ0)
3115adantr 272 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℕ)
32 elfzo0 9800 . . . . 5 ((𝐾 + 𝐽) ∈ (0..^𝑁) ↔ ((𝐾 + 𝐽) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝐾 + 𝐽) < 𝑁))
3330, 31, 27, 32syl3anbrc 1133 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ (0..^𝑁))
342zcnd 9026 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℂ)
35 0cnd 7631 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 0 ∈ ℂ)
368nn0cnd 8884 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℂ)
3722nnne0d 8623 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ≠ 0)
3834, 35, 36, 37addneintr2d 7822 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ≠ (0 + 𝐽))
3936addid2d 7783 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (0 + 𝐽) = 𝐽)
4038, 39neeqtrd 2295 . . . . 5 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ≠ 𝐽)
4140adantr 272 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ≠ 𝐽)
42 eldifsn 3597 . . . 4 ((𝐾 + 𝐽) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ ((𝐾 + 𝐽) ∈ (0..^𝑁) ∧ (𝐾 + 𝐽) ≠ 𝐽))
4333, 41, 42sylanbrc 411 . . 3 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ ((0..^𝑁) ∖ {𝐽}))
4429, 43eqeltrd 2176 . 2 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
4515nncnd 8592 . . . . . . . . 9 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℂ)
4645adantr 272 . . . . . . . 8 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℂ)
4746mulm1d 8039 . . . . . . 7 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (-1 · 𝑁) = -𝑁)
4847oveq2d 5722 . . . . . 6 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) + (-1 · 𝑁)) = ((𝐾 + 𝐽) + -𝑁))
4934, 36addcld 7657 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℂ)
5049, 45negsubd 7950 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) + -𝑁) = ((𝐾 + 𝐽) − 𝑁))
5150adantr 272 . . . . . 6 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) + -𝑁) = ((𝐾 + 𝐽) − 𝑁))
5248, 51eqtrd 2132 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) + (-1 · 𝑁)) = ((𝐾 + 𝐽) − 𝑁))
5352oveq1d 5721 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (((𝐾 + 𝐽) + (-1 · 𝑁)) mod 𝑁) = (((𝐾 + 𝐽) − 𝑁) mod 𝑁))
5413adantr 272 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ ℚ)
55 neg1z 8938 . . . . . 6 -1 ∈ ℤ
5655a1i 9 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → -1 ∈ ℤ)
5717adantr 272 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℚ)
5815nngt0d 8622 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 0 < 𝑁)
5958adantr 272 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 0 < 𝑁)
60 modqcyc 9973 . . . . 5 ((((𝐾 + 𝐽) ∈ ℚ ∧ -1 ∈ ℤ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → (((𝐾 + 𝐽) + (-1 · 𝑁)) mod 𝑁) = ((𝐾 + 𝐽) mod 𝑁))
6154, 56, 57, 59, 60syl22anc 1185 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (((𝐾 + 𝐽) + (-1 · 𝑁)) mod 𝑁) = ((𝐾 + 𝐽) mod 𝑁))
62 qsubcl 9280 . . . . . . 7 (((𝐾 + 𝐽) ∈ ℚ ∧ 𝑁 ∈ ℚ) → ((𝐾 + 𝐽) − 𝑁) ∈ ℚ)
6313, 17, 62syl2anc 406 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) ∈ ℚ)
6463adantr 272 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈ ℚ)
65 simpr 109 . . . . . . 7 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ¬ (𝐾 + 𝐽) < 𝑁)
6615nnred 8591 . . . . . . . . 9 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℝ)
6766adantr 272 . . . . . . . 8 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℝ)
6824nn0red 8883 . . . . . . . . 9 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℝ)
6968adantr 272 . . . . . . . 8 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ ℝ)
7067, 69lenltd 7751 . . . . . . 7 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (𝑁 ≤ (𝐾 + 𝐽) ↔ ¬ (𝐾 + 𝐽) < 𝑁))
7165, 70mpbird 166 . . . . . 6 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ≤ (𝐾 + 𝐽))
7269, 67subge0d 8163 . . . . . 6 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (0 ≤ ((𝐾 + 𝐽) − 𝑁) ↔ 𝑁 ≤ (𝐾 + 𝐽)))
7371, 72mpbird 166 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 0 ≤ ((𝐾 + 𝐽) − 𝑁))
742zred 9025 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℝ)
758nn0red 8883 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℝ)
7621simp3d 963 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 < 𝑁)
777simp3d 963 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 < 𝑁)
7874, 75, 66, 66, 76, 77lt2addd 8195 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) < (𝑁 + 𝑁))
7968, 66, 66ltsubaddd 8169 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (((𝐾 + 𝐽) − 𝑁) < 𝑁 ↔ (𝐾 + 𝐽) < (𝑁 + 𝑁)))
8078, 79mpbird 166 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) < 𝑁)
8180adantr 272 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) < 𝑁)
82 modqid 9963 . . . . 5 (((((𝐾 + 𝐽) − 𝑁) ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (0 ≤ ((𝐾 + 𝐽) − 𝑁) ∧ ((𝐾 + 𝐽) − 𝑁) < 𝑁)) → (((𝐾 + 𝐽) − 𝑁) mod 𝑁) = ((𝐾 + 𝐽) − 𝑁))
8364, 57, 73, 81, 82syl22anc 1185 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (((𝐾 + 𝐽) − 𝑁) mod 𝑁) = ((𝐾 + 𝐽) − 𝑁))
8453, 61, 833eqtr3d 2140 . . 3 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) mod 𝑁) = ((𝐾 + 𝐽) − 𝑁))
8524nn0zd 9023 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℤ)
8615nnzd 9024 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℤ)
8785, 86zsubcld 9030 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) ∈ ℤ)
8887adantr 272 . . . . . 6 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈ ℤ)
89 elnn0z 8919 . . . . . 6 (((𝐾 + 𝐽) − 𝑁) ∈ ℕ0 ↔ (((𝐾 + 𝐽) − 𝑁) ∈ ℤ ∧ 0 ≤ ((𝐾 + 𝐽) − 𝑁)))
9088, 73, 89sylanbrc 411 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈ ℕ0)
9115adantr 272 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℕ)
92 elfzo0 9800 . . . . 5 (((𝐾 + 𝐽) − 𝑁) ∈ (0..^𝑁) ↔ (((𝐾 + 𝐽) − 𝑁) ∈ ℕ0𝑁 ∈ ℕ ∧ ((𝐾 + 𝐽) − 𝑁) < 𝑁))
9390, 91, 81, 92syl3anbrc 1133 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈ (0..^𝑁))
9434, 45subcld 7944 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾𝑁) ∈ ℂ)
9574, 76ltned 7748 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾𝑁)
9634, 45, 95subne0d 7953 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾𝑁) ≠ 0)
9794, 35, 36, 96addneintr2d 7822 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾𝑁) + 𝐽) ≠ (0 + 𝐽))
9834, 36, 45addsubd 7965 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) = ((𝐾𝑁) + 𝐽))
9939eqcomd 2105 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 = (0 + 𝐽))
10097, 98, 993netr4d 2300 . . . . 5 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) ≠ 𝐽)
101100adantr 272 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ≠ 𝐽)
102 eldifsn 3597 . . . 4 (((𝐾 + 𝐽) − 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ (((𝐾 + 𝐽) − 𝑁) ∈ (0..^𝑁) ∧ ((𝐾 + 𝐽) − 𝑁) ≠ 𝐽))
10393, 101, 102sylanbrc 411 . . 3 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
10484, 103eqeltrd 2176 . 2 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
105 zdclt 8980 . . . 4 (((𝐾 + 𝐽) ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝐾 + 𝐽) < 𝑁)
106 exmiddc 788 . . . 4 (DECID (𝐾 + 𝐽) < 𝑁 → ((𝐾 + 𝐽) < 𝑁 ∨ ¬ (𝐾 + 𝐽) < 𝑁))
107105, 106syl 14 . . 3 (((𝐾 + 𝐽) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 + 𝐽) < 𝑁 ∨ ¬ (𝐾 + 𝐽) < 𝑁))
10885, 86, 107syl2anc 406 . 2 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) < 𝑁 ∨ ¬ (𝐾 + 𝐽) < 𝑁))
10944, 104, 108mpjaodan 753 1 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 670  DECID wdc 786  w3a 930   = wceq 1299  wcel 1448  wne 2267  cdif 3018  {csn 3474   class class class wbr 3875  (class class class)co 5706  cc 7498  cr 7499  0cc0 7500  1c1 7501   + caddc 7503   · cmul 7505   < clt 7672  cle 7673  cmin 7804  -cneg 7805  cn 8578  0cn0 8829  cz 8906  cq 9261  ..^cfzo 9760   mod cmo 9936
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-po 4156  df-iso 4157  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-n0 8830  df-z 8907  df-uz 9177  df-q 9262  df-rp 9292  df-fz 9632  df-fzo 9761  df-fl 9884  df-mod 9937
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator