Proof of Theorem modsumfzodifsn
| Step | Hyp | Ref
 | Expression | 
| 1 |   | elfzoelz 10222 | 
. . . . . . . 8
⊢ (𝐾 ∈ (1..^𝑁) → 𝐾 ∈ ℤ) | 
| 2 | 1 | adantl 277 | 
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℤ) | 
| 3 |   | zq 9700 | 
. . . . . . 7
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℚ) | 
| 4 | 2, 3 | syl 14 | 
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℚ) | 
| 5 |   | elfzo0 10258 | 
. . . . . . . . . . 11
⊢ (𝐽 ∈ (0..^𝑁) ↔ (𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) | 
| 6 | 5 | biimpi 120 | 
. . . . . . . . . 10
⊢ (𝐽 ∈ (0..^𝑁) → (𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) | 
| 7 | 6 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) | 
| 8 | 7 | simp1d 1011 | 
. . . . . . . 8
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈
ℕ0) | 
| 9 | 8 | nn0zd 9446 | 
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℤ) | 
| 10 |   | zq 9700 | 
. . . . . . 7
⊢ (𝐽 ∈ ℤ → 𝐽 ∈
ℚ) | 
| 11 | 9, 10 | syl 14 | 
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℚ) | 
| 12 |   | qaddcl 9709 | 
. . . . . 6
⊢ ((𝐾 ∈ ℚ ∧ 𝐽 ∈ ℚ) → (𝐾 + 𝐽) ∈ ℚ) | 
| 13 | 4, 11, 12 | syl2anc 411 | 
. . . . 5
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℚ) | 
| 14 | 13 | adantr 276 | 
. . . 4
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ ℚ) | 
| 15 | 7 | simp2d 1012 | 
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℕ) | 
| 16 |   | nnq 9707 | 
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℚ) | 
| 17 | 15, 16 | syl 14 | 
. . . . 5
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℚ) | 
| 18 | 17 | adantr 276 | 
. . . 4
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℚ) | 
| 19 |   | elfzo1 10266 | 
. . . . . . . . . . 11
⊢ (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) | 
| 20 | 19 | biimpi 120 | 
. . . . . . . . . 10
⊢ (𝐾 ∈ (1..^𝑁) → (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) | 
| 21 | 20 | adantl 277 | 
. . . . . . . . 9
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) | 
| 22 | 21 | simp1d 1011 | 
. . . . . . . 8
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℕ) | 
| 23 | 22 | nnnn0d 9302 | 
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈
ℕ0) | 
| 24 | 23, 8 | nn0addcld 9306 | 
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈
ℕ0) | 
| 25 | 24 | nn0ge0d 9305 | 
. . . . 5
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 0 ≤ (𝐾 + 𝐽)) | 
| 26 | 25 | adantr 276 | 
. . . 4
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → 0 ≤ (𝐾 + 𝐽)) | 
| 27 |   | simpr 110 | 
. . . 4
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) < 𝑁) | 
| 28 |   | modqid 10441 | 
. . . 4
⊢ ((((𝐾 + 𝐽) ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (0 ≤ (𝐾 + 𝐽) ∧ (𝐾 + 𝐽) < 𝑁)) → ((𝐾 + 𝐽) mod 𝑁) = (𝐾 + 𝐽)) | 
| 29 | 14, 18, 26, 27, 28 | syl22anc 1250 | 
. . 3
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) mod 𝑁) = (𝐾 + 𝐽)) | 
| 30 | 24 | adantr 276 | 
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈
ℕ0) | 
| 31 | 15 | adantr 276 | 
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℕ) | 
| 32 |   | elfzo0 10258 | 
. . . . 5
⊢ ((𝐾 + 𝐽) ∈ (0..^𝑁) ↔ ((𝐾 + 𝐽) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ (𝐾 + 𝐽) < 𝑁)) | 
| 33 | 30, 31, 27, 32 | syl3anbrc 1183 | 
. . . 4
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ (0..^𝑁)) | 
| 34 | 2 | zcnd 9449 | 
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℂ) | 
| 35 |   | 0cnd 8019 | 
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 0 ∈ ℂ) | 
| 36 | 8 | nn0cnd 9304 | 
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℂ) | 
| 37 | 22 | nnne0d 9035 | 
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ≠ 0) | 
| 38 | 34, 35, 36, 37 | addneintr2d 8215 | 
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ≠ (0 + 𝐽)) | 
| 39 | 36 | addlidd 8176 | 
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (0 + 𝐽) = 𝐽) | 
| 40 | 38, 39 | neeqtrd 2395 | 
. . . . 5
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ≠ 𝐽) | 
| 41 | 40 | adantr 276 | 
. . . 4
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ≠ 𝐽) | 
| 42 |   | eldifsn 3749 | 
. . . 4
⊢ ((𝐾 + 𝐽) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ ((𝐾 + 𝐽) ∈ (0..^𝑁) ∧ (𝐾 + 𝐽) ≠ 𝐽)) | 
| 43 | 33, 41, 42 | sylanbrc 417 | 
. . 3
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ ((0..^𝑁) ∖ {𝐽})) | 
| 44 | 29, 43 | eqeltrd 2273 | 
. 2
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})) | 
| 45 | 15 | nncnd 9004 | 
. . . . . . . . 9
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℂ) | 
| 46 | 45 | adantr 276 | 
. . . . . . . 8
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℂ) | 
| 47 | 46 | mulm1d 8436 | 
. . . . . . 7
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (-1 · 𝑁) = -𝑁) | 
| 48 | 47 | oveq2d 5938 | 
. . . . . 6
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) + (-1 · 𝑁)) = ((𝐾 + 𝐽) + -𝑁)) | 
| 49 | 34, 36 | addcld 8046 | 
. . . . . . . 8
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℂ) | 
| 50 | 49, 45 | negsubd 8343 | 
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) + -𝑁) = ((𝐾 + 𝐽) − 𝑁)) | 
| 51 | 50 | adantr 276 | 
. . . . . 6
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) + -𝑁) = ((𝐾 + 𝐽) − 𝑁)) | 
| 52 | 48, 51 | eqtrd 2229 | 
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) + (-1 · 𝑁)) = ((𝐾 + 𝐽) − 𝑁)) | 
| 53 | 52 | oveq1d 5937 | 
. . . 4
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (((𝐾 + 𝐽) + (-1 · 𝑁)) mod 𝑁) = (((𝐾 + 𝐽) − 𝑁) mod 𝑁)) | 
| 54 | 13 | adantr 276 | 
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ ℚ) | 
| 55 |   | neg1z 9358 | 
. . . . . 6
⊢ -1 ∈
ℤ | 
| 56 | 55 | a1i 9 | 
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → -1 ∈ ℤ) | 
| 57 | 17 | adantr 276 | 
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℚ) | 
| 58 | 15 | nngt0d 9034 | 
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 0 < 𝑁) | 
| 59 | 58 | adantr 276 | 
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 0 < 𝑁) | 
| 60 |   | modqcyc 10451 | 
. . . . 5
⊢ ((((𝐾 + 𝐽) ∈ ℚ ∧ -1 ∈ ℤ)
∧ (𝑁 ∈ ℚ
∧ 0 < 𝑁)) →
(((𝐾 + 𝐽) + (-1 · 𝑁)) mod 𝑁) = ((𝐾 + 𝐽) mod 𝑁)) | 
| 61 | 54, 56, 57, 59, 60 | syl22anc 1250 | 
. . . 4
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (((𝐾 + 𝐽) + (-1 · 𝑁)) mod 𝑁) = ((𝐾 + 𝐽) mod 𝑁)) | 
| 62 |   | qsubcl 9712 | 
. . . . . . 7
⊢ (((𝐾 + 𝐽) ∈ ℚ ∧ 𝑁 ∈ ℚ) → ((𝐾 + 𝐽) − 𝑁) ∈ ℚ) | 
| 63 | 13, 17, 62 | syl2anc 411 | 
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) ∈ ℚ) | 
| 64 | 63 | adantr 276 | 
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈ ℚ) | 
| 65 |   | simpr 110 | 
. . . . . . 7
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ¬ (𝐾 + 𝐽) < 𝑁) | 
| 66 | 15 | nnred 9003 | 
. . . . . . . . 9
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℝ) | 
| 67 | 66 | adantr 276 | 
. . . . . . . 8
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℝ) | 
| 68 | 24 | nn0red 9303 | 
. . . . . . . . 9
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℝ) | 
| 69 | 68 | adantr 276 | 
. . . . . . . 8
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ ℝ) | 
| 70 | 67, 69 | lenltd 8144 | 
. . . . . . 7
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (𝑁 ≤ (𝐾 + 𝐽) ↔ ¬ (𝐾 + 𝐽) < 𝑁)) | 
| 71 | 65, 70 | mpbird 167 | 
. . . . . 6
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ≤ (𝐾 + 𝐽)) | 
| 72 | 69, 67 | subge0d 8562 | 
. . . . . 6
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (0 ≤ ((𝐾 + 𝐽) − 𝑁) ↔ 𝑁 ≤ (𝐾 + 𝐽))) | 
| 73 | 71, 72 | mpbird 167 | 
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 0 ≤ ((𝐾 + 𝐽) − 𝑁)) | 
| 74 | 2 | zred 9448 | 
. . . . . . . 8
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℝ) | 
| 75 | 8 | nn0red 9303 | 
. . . . . . . 8
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℝ) | 
| 76 | 21 | simp3d 1013 | 
. . . . . . . 8
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 < 𝑁) | 
| 77 | 7 | simp3d 1013 | 
. . . . . . . 8
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 < 𝑁) | 
| 78 | 74, 75, 66, 66, 76, 77 | lt2addd 8594 | 
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) < (𝑁 + 𝑁)) | 
| 79 | 68, 66, 66 | ltsubaddd 8568 | 
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (((𝐾 + 𝐽) − 𝑁) < 𝑁 ↔ (𝐾 + 𝐽) < (𝑁 + 𝑁))) | 
| 80 | 78, 79 | mpbird 167 | 
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) < 𝑁) | 
| 81 | 80 | adantr 276 | 
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) < 𝑁) | 
| 82 |   | modqid 10441 | 
. . . . 5
⊢
(((((𝐾 + 𝐽) − 𝑁) ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (0 ≤ ((𝐾 + 𝐽) − 𝑁) ∧ ((𝐾 + 𝐽) − 𝑁) < 𝑁)) → (((𝐾 + 𝐽) − 𝑁) mod 𝑁) = ((𝐾 + 𝐽) − 𝑁)) | 
| 83 | 64, 57, 73, 81, 82 | syl22anc 1250 | 
. . . 4
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (((𝐾 + 𝐽) − 𝑁) mod 𝑁) = ((𝐾 + 𝐽) − 𝑁)) | 
| 84 | 53, 61, 83 | 3eqtr3d 2237 | 
. . 3
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) mod 𝑁) = ((𝐾 + 𝐽) − 𝑁)) | 
| 85 | 24 | nn0zd 9446 | 
. . . . . . . 8
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℤ) | 
| 86 | 15 | nnzd 9447 | 
. . . . . . . 8
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℤ) | 
| 87 | 85, 86 | zsubcld 9453 | 
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) ∈ ℤ) | 
| 88 | 87 | adantr 276 | 
. . . . . 6
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈ ℤ) | 
| 89 |   | elnn0z 9339 | 
. . . . . 6
⊢ (((𝐾 + 𝐽) − 𝑁) ∈ ℕ0 ↔ (((𝐾 + 𝐽) − 𝑁) ∈ ℤ ∧ 0 ≤ ((𝐾 + 𝐽) − 𝑁))) | 
| 90 | 88, 73, 89 | sylanbrc 417 | 
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈
ℕ0) | 
| 91 | 15 | adantr 276 | 
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℕ) | 
| 92 |   | elfzo0 10258 | 
. . . . 5
⊢ (((𝐾 + 𝐽) − 𝑁) ∈ (0..^𝑁) ↔ (((𝐾 + 𝐽) − 𝑁) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ ((𝐾 + 𝐽) − 𝑁) < 𝑁)) | 
| 93 | 90, 91, 81, 92 | syl3anbrc 1183 | 
. . . 4
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈ (0..^𝑁)) | 
| 94 | 34, 45 | subcld 8337 | 
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 − 𝑁) ∈ ℂ) | 
| 95 | 74, 76 | ltned 8140 | 
. . . . . . . 8
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ≠ 𝑁) | 
| 96 | 34, 45, 95 | subne0d 8346 | 
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 − 𝑁) ≠ 0) | 
| 97 | 94, 35, 36, 96 | addneintr2d 8215 | 
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 − 𝑁) + 𝐽) ≠ (0 + 𝐽)) | 
| 98 | 34, 36, 45 | addsubd 8358 | 
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) = ((𝐾 − 𝑁) + 𝐽)) | 
| 99 | 39 | eqcomd 2202 | 
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 = (0 + 𝐽)) | 
| 100 | 97, 98, 99 | 3netr4d 2400 | 
. . . . 5
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) ≠ 𝐽) | 
| 101 | 100 | adantr 276 | 
. . . 4
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ≠ 𝐽) | 
| 102 |   | eldifsn 3749 | 
. . . 4
⊢ (((𝐾 + 𝐽) − 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ (((𝐾 + 𝐽) − 𝑁) ∈ (0..^𝑁) ∧ ((𝐾 + 𝐽) − 𝑁) ≠ 𝐽)) | 
| 103 | 93, 101, 102 | sylanbrc 417 | 
. . 3
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})) | 
| 104 | 84, 103 | eqeltrd 2273 | 
. 2
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})) | 
| 105 |   | zdclt 9403 | 
. . . 4
⊢ (((𝐾 + 𝐽) ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID
(𝐾 + 𝐽) < 𝑁) | 
| 106 |   | exmiddc 837 | 
. . . 4
⊢
(DECID (𝐾 + 𝐽) < 𝑁 → ((𝐾 + 𝐽) < 𝑁 ∨ ¬ (𝐾 + 𝐽) < 𝑁)) | 
| 107 | 105, 106 | syl 14 | 
. . 3
⊢ (((𝐾 + 𝐽) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 + 𝐽) < 𝑁 ∨ ¬ (𝐾 + 𝐽) < 𝑁)) | 
| 108 | 85, 86, 107 | syl2anc 411 | 
. 2
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) < 𝑁 ∨ ¬ (𝐾 + 𝐽) < 𝑁)) | 
| 109 | 44, 104, 108 | mpjaodan 799 | 
1
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})) |