ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modsumfzodifsn GIF version

Theorem modsumfzodifsn 9734
Description: The sum of a number within a half-open range of positive integers is an element of the corresponding open range of nonnegative integers with one excluded integer modulo the excluded integer. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
modsumfzodifsn ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))

Proof of Theorem modsumfzodifsn
StepHypRef Expression
1 elfzoelz 9489 . . . . . . . 8 (𝐾 ∈ (1..^𝑁) → 𝐾 ∈ ℤ)
21adantl 271 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℤ)
3 zq 9046 . . . . . . 7 (𝐾 ∈ ℤ → 𝐾 ∈ ℚ)
42, 3syl 14 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℚ)
5 elfzo0 9524 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) ↔ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
65biimpi 118 . . . . . . . . . 10 (𝐽 ∈ (0..^𝑁) → (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
76adantr 270 . . . . . . . . 9 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
87simp1d 953 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℕ0)
98nn0zd 8802 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℤ)
10 zq 9046 . . . . . . 7 (𝐽 ∈ ℤ → 𝐽 ∈ ℚ)
119, 10syl 14 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℚ)
12 qaddcl 9055 . . . . . 6 ((𝐾 ∈ ℚ ∧ 𝐽 ∈ ℚ) → (𝐾 + 𝐽) ∈ ℚ)
134, 11, 12syl2anc 403 . . . . 5 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℚ)
1413adantr 270 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ ℚ)
157simp2d 954 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℕ)
16 nnq 9053 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
1715, 16syl 14 . . . . 5 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℚ)
1817adantr 270 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℚ)
19 elfzo1 9532 . . . . . . . . . . 11 (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2019biimpi 118 . . . . . . . . . 10 (𝐾 ∈ (1..^𝑁) → (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2120adantl 271 . . . . . . . . 9 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2221simp1d 953 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℕ)
2322nnnn0d 8662 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℕ0)
2423, 8nn0addcld 8666 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℕ0)
2524nn0ge0d 8665 . . . . 5 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 0 ≤ (𝐾 + 𝐽))
2625adantr 270 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → 0 ≤ (𝐾 + 𝐽))
27 simpr 108 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) < 𝑁)
28 modqid 9687 . . . 4 ((((𝐾 + 𝐽) ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (0 ≤ (𝐾 + 𝐽) ∧ (𝐾 + 𝐽) < 𝑁)) → ((𝐾 + 𝐽) mod 𝑁) = (𝐾 + 𝐽))
2914, 18, 26, 27, 28syl22anc 1173 . . 3 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) mod 𝑁) = (𝐾 + 𝐽))
3024adantr 270 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ ℕ0)
3115adantr 270 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℕ)
32 elfzo0 9524 . . . . 5 ((𝐾 + 𝐽) ∈ (0..^𝑁) ↔ ((𝐾 + 𝐽) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝐾 + 𝐽) < 𝑁))
3330, 31, 27, 32syl3anbrc 1125 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ (0..^𝑁))
342zcnd 8805 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℂ)
35 0cnd 7428 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 0 ∈ ℂ)
368nn0cnd 8664 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℂ)
3722nnne0d 8404 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ≠ 0)
3834, 35, 36, 37addneintr2d 7618 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ≠ (0 + 𝐽))
3936addid2d 7579 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (0 + 𝐽) = 𝐽)
4038, 39neeqtrd 2279 . . . . 5 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ≠ 𝐽)
4140adantr 270 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ≠ 𝐽)
42 eldifsn 3552 . . . 4 ((𝐾 + 𝐽) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ ((𝐾 + 𝐽) ∈ (0..^𝑁) ∧ (𝐾 + 𝐽) ≠ 𝐽))
4333, 41, 42sylanbrc 408 . . 3 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ ((0..^𝑁) ∖ {𝐽}))
4429, 43eqeltrd 2161 . 2 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
4515nncnd 8374 . . . . . . . . 9 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℂ)
4645adantr 270 . . . . . . . 8 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℂ)
4746mulm1d 7835 . . . . . . 7 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (-1 · 𝑁) = -𝑁)
4847oveq2d 5631 . . . . . 6 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) + (-1 · 𝑁)) = ((𝐾 + 𝐽) + -𝑁))
4934, 36addcld 7454 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℂ)
5049, 45negsubd 7746 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) + -𝑁) = ((𝐾 + 𝐽) − 𝑁))
5150adantr 270 . . . . . 6 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) + -𝑁) = ((𝐾 + 𝐽) − 𝑁))
5248, 51eqtrd 2117 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) + (-1 · 𝑁)) = ((𝐾 + 𝐽) − 𝑁))
5352oveq1d 5630 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (((𝐾 + 𝐽) + (-1 · 𝑁)) mod 𝑁) = (((𝐾 + 𝐽) − 𝑁) mod 𝑁))
5413adantr 270 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ ℚ)
55 neg1z 8718 . . . . . 6 -1 ∈ ℤ
5655a1i 9 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → -1 ∈ ℤ)
5717adantr 270 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℚ)
5815nngt0d 8403 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 0 < 𝑁)
5958adantr 270 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 0 < 𝑁)
60 modqcyc 9697 . . . . 5 ((((𝐾 + 𝐽) ∈ ℚ ∧ -1 ∈ ℤ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → (((𝐾 + 𝐽) + (-1 · 𝑁)) mod 𝑁) = ((𝐾 + 𝐽) mod 𝑁))
6154, 56, 57, 59, 60syl22anc 1173 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (((𝐾 + 𝐽) + (-1 · 𝑁)) mod 𝑁) = ((𝐾 + 𝐽) mod 𝑁))
62 qsubcl 9058 . . . . . . 7 (((𝐾 + 𝐽) ∈ ℚ ∧ 𝑁 ∈ ℚ) → ((𝐾 + 𝐽) − 𝑁) ∈ ℚ)
6313, 17, 62syl2anc 403 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) ∈ ℚ)
6463adantr 270 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈ ℚ)
65 simpr 108 . . . . . . 7 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ¬ (𝐾 + 𝐽) < 𝑁)
6615nnred 8373 . . . . . . . . 9 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℝ)
6766adantr 270 . . . . . . . 8 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℝ)
6824nn0red 8663 . . . . . . . . 9 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℝ)
6968adantr 270 . . . . . . . 8 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ ℝ)
7067, 69lenltd 7548 . . . . . . 7 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (𝑁 ≤ (𝐾 + 𝐽) ↔ ¬ (𝐾 + 𝐽) < 𝑁))
7165, 70mpbird 165 . . . . . 6 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ≤ (𝐾 + 𝐽))
7269, 67subge0d 7956 . . . . . 6 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (0 ≤ ((𝐾 + 𝐽) − 𝑁) ↔ 𝑁 ≤ (𝐾 + 𝐽)))
7371, 72mpbird 165 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 0 ≤ ((𝐾 + 𝐽) − 𝑁))
742zred 8804 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℝ)
758nn0red 8663 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℝ)
7621simp3d 955 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 < 𝑁)
777simp3d 955 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 < 𝑁)
7874, 75, 66, 66, 76, 77lt2addd 7988 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) < (𝑁 + 𝑁))
7968, 66, 66ltsubaddd 7962 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (((𝐾 + 𝐽) − 𝑁) < 𝑁 ↔ (𝐾 + 𝐽) < (𝑁 + 𝑁)))
8078, 79mpbird 165 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) < 𝑁)
8180adantr 270 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) < 𝑁)
82 modqid 9687 . . . . 5 (((((𝐾 + 𝐽) − 𝑁) ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (0 ≤ ((𝐾 + 𝐽) − 𝑁) ∧ ((𝐾 + 𝐽) − 𝑁) < 𝑁)) → (((𝐾 + 𝐽) − 𝑁) mod 𝑁) = ((𝐾 + 𝐽) − 𝑁))
8364, 57, 73, 81, 82syl22anc 1173 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (((𝐾 + 𝐽) − 𝑁) mod 𝑁) = ((𝐾 + 𝐽) − 𝑁))
8453, 61, 833eqtr3d 2125 . . 3 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) mod 𝑁) = ((𝐾 + 𝐽) − 𝑁))
8524nn0zd 8802 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℤ)
8615nnzd 8803 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℤ)
8785, 86zsubcld 8809 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) ∈ ℤ)
8887adantr 270 . . . . . 6 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈ ℤ)
89 elnn0z 8699 . . . . . 6 (((𝐾 + 𝐽) − 𝑁) ∈ ℕ0 ↔ (((𝐾 + 𝐽) − 𝑁) ∈ ℤ ∧ 0 ≤ ((𝐾 + 𝐽) − 𝑁)))
9088, 73, 89sylanbrc 408 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈ ℕ0)
9115adantr 270 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℕ)
92 elfzo0 9524 . . . . 5 (((𝐾 + 𝐽) − 𝑁) ∈ (0..^𝑁) ↔ (((𝐾 + 𝐽) − 𝑁) ∈ ℕ0𝑁 ∈ ℕ ∧ ((𝐾 + 𝐽) − 𝑁) < 𝑁))
9390, 91, 81, 92syl3anbrc 1125 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈ (0..^𝑁))
9434, 45subcld 7740 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾𝑁) ∈ ℂ)
9574, 76ltned 7545 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾𝑁)
9634, 45, 95subne0d 7749 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾𝑁) ≠ 0)
9794, 35, 36, 96addneintr2d 7618 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾𝑁) + 𝐽) ≠ (0 + 𝐽))
9834, 36, 45addsubd 7761 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) = ((𝐾𝑁) + 𝐽))
9939eqcomd 2090 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 = (0 + 𝐽))
10097, 98, 993netr4d 2284 . . . . 5 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) ≠ 𝐽)
101100adantr 270 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ≠ 𝐽)
102 eldifsn 3552 . . . 4 (((𝐾 + 𝐽) − 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ (((𝐾 + 𝐽) − 𝑁) ∈ (0..^𝑁) ∧ ((𝐾 + 𝐽) − 𝑁) ≠ 𝐽))
10393, 101, 102sylanbrc 408 . . 3 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
10484, 103eqeltrd 2161 . 2 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
105 zdclt 8760 . . . 4 (((𝐾 + 𝐽) ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝐾 + 𝐽) < 𝑁)
106 exmiddc 780 . . . 4 (DECID (𝐾 + 𝐽) < 𝑁 → ((𝐾 + 𝐽) < 𝑁 ∨ ¬ (𝐾 + 𝐽) < 𝑁))
107105, 106syl 14 . . 3 (((𝐾 + 𝐽) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 + 𝐽) < 𝑁 ∨ ¬ (𝐾 + 𝐽) < 𝑁))
10885, 86, 107syl2anc 403 . 2 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) < 𝑁 ∨ ¬ (𝐾 + 𝐽) < 𝑁))
10944, 104, 108mpjaodan 745 1 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wo 662  DECID wdc 778  w3a 922   = wceq 1287  wcel 1436  wne 2251  cdif 2985  {csn 3431   class class class wbr 3822  (class class class)co 5615  cc 7295  cr 7296  0cc0 7297  1c1 7298   + caddc 7300   · cmul 7302   < clt 7469  cle 7470  cmin 7600  -cneg 7601  cn 8360  0cn0 8609  cz 8686  cq 9039  ..^cfzo 9484   mod cmo 9660
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-cnex 7383  ax-resscn 7384  ax-1cn 7385  ax-1re 7386  ax-icn 7387  ax-addcl 7388  ax-addrcl 7389  ax-mulcl 7390  ax-mulrcl 7391  ax-addcom 7392  ax-mulcom 7393  ax-addass 7394  ax-mulass 7395  ax-distr 7396  ax-i2m1 7397  ax-0lt1 7398  ax-1rid 7399  ax-0id 7400  ax-rnegex 7401  ax-precex 7402  ax-cnre 7403  ax-pre-ltirr 7404  ax-pre-ltwlin 7405  ax-pre-lttrn 7406  ax-pre-apti 7407  ax-pre-ltadd 7408  ax-pre-mulgt0 7409  ax-pre-mulext 7410  ax-arch 7411
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-iun 3717  df-br 3823  df-opab 3877  df-mpt 3878  df-id 4096  df-po 4099  df-iso 4100  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-f 4987  df-fv 4991  df-riota 5571  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-1st 5870  df-2nd 5871  df-pnf 7471  df-mnf 7472  df-xr 7473  df-ltxr 7474  df-le 7475  df-sub 7602  df-neg 7603  df-reap 7996  df-ap 8003  df-div 8082  df-inn 8361  df-n0 8610  df-z 8687  df-uz 8955  df-q 9040  df-rp 9070  df-fz 9360  df-fzo 9485  df-fl 9608  df-mod 9661
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator