ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modsumfzodifsn GIF version

Theorem modsumfzodifsn 10613
Description: The sum of a number within a half-open range of positive integers is an element of the corresponding open range of nonnegative integers with one excluded integer modulo the excluded integer. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
modsumfzodifsn ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))

Proof of Theorem modsumfzodifsn
StepHypRef Expression
1 elfzoelz 10339 . . . . . . . 8 (𝐾 ∈ (1..^𝑁) → 𝐾 ∈ ℤ)
21adantl 277 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℤ)
3 zq 9817 . . . . . . 7 (𝐾 ∈ ℤ → 𝐾 ∈ ℚ)
42, 3syl 14 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℚ)
5 elfzo0 10378 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) ↔ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
65biimpi 120 . . . . . . . . . 10 (𝐽 ∈ (0..^𝑁) → (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
76adantr 276 . . . . . . . . 9 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
87simp1d 1033 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℕ0)
98nn0zd 9563 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℤ)
10 zq 9817 . . . . . . 7 (𝐽 ∈ ℤ → 𝐽 ∈ ℚ)
119, 10syl 14 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℚ)
12 qaddcl 9826 . . . . . 6 ((𝐾 ∈ ℚ ∧ 𝐽 ∈ ℚ) → (𝐾 + 𝐽) ∈ ℚ)
134, 11, 12syl2anc 411 . . . . 5 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℚ)
1413adantr 276 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ ℚ)
157simp2d 1034 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℕ)
16 nnq 9824 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
1715, 16syl 14 . . . . 5 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℚ)
1817adantr 276 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℚ)
19 elfzo1 10386 . . . . . . . . . . 11 (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2019biimpi 120 . . . . . . . . . 10 (𝐾 ∈ (1..^𝑁) → (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2120adantl 277 . . . . . . . . 9 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2221simp1d 1033 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℕ)
2322nnnn0d 9418 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℕ0)
2423, 8nn0addcld 9422 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℕ0)
2524nn0ge0d 9421 . . . . 5 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 0 ≤ (𝐾 + 𝐽))
2625adantr 276 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → 0 ≤ (𝐾 + 𝐽))
27 simpr 110 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) < 𝑁)
28 modqid 10566 . . . 4 ((((𝐾 + 𝐽) ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (0 ≤ (𝐾 + 𝐽) ∧ (𝐾 + 𝐽) < 𝑁)) → ((𝐾 + 𝐽) mod 𝑁) = (𝐾 + 𝐽))
2914, 18, 26, 27, 28syl22anc 1272 . . 3 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) mod 𝑁) = (𝐾 + 𝐽))
3024adantr 276 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ ℕ0)
3115adantr 276 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℕ)
32 elfzo0 10378 . . . . 5 ((𝐾 + 𝐽) ∈ (0..^𝑁) ↔ ((𝐾 + 𝐽) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝐾 + 𝐽) < 𝑁))
3330, 31, 27, 32syl3anbrc 1205 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ (0..^𝑁))
342zcnd 9566 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℂ)
35 0cnd 8135 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 0 ∈ ℂ)
368nn0cnd 9420 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℂ)
3722nnne0d 9151 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ≠ 0)
3834, 35, 36, 37addneintr2d 8331 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ≠ (0 + 𝐽))
3936addlidd 8292 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (0 + 𝐽) = 𝐽)
4038, 39neeqtrd 2428 . . . . 5 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ≠ 𝐽)
4140adantr 276 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ≠ 𝐽)
42 eldifsn 3794 . . . 4 ((𝐾 + 𝐽) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ ((𝐾 + 𝐽) ∈ (0..^𝑁) ∧ (𝐾 + 𝐽) ≠ 𝐽))
4333, 41, 42sylanbrc 417 . . 3 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ ((0..^𝑁) ∖ {𝐽}))
4429, 43eqeltrd 2306 . 2 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
4515nncnd 9120 . . . . . . . . 9 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℂ)
4645adantr 276 . . . . . . . 8 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℂ)
4746mulm1d 8552 . . . . . . 7 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (-1 · 𝑁) = -𝑁)
4847oveq2d 6016 . . . . . 6 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) + (-1 · 𝑁)) = ((𝐾 + 𝐽) + -𝑁))
4934, 36addcld 8162 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℂ)
5049, 45negsubd 8459 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) + -𝑁) = ((𝐾 + 𝐽) − 𝑁))
5150adantr 276 . . . . . 6 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) + -𝑁) = ((𝐾 + 𝐽) − 𝑁))
5248, 51eqtrd 2262 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) + (-1 · 𝑁)) = ((𝐾 + 𝐽) − 𝑁))
5352oveq1d 6015 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (((𝐾 + 𝐽) + (-1 · 𝑁)) mod 𝑁) = (((𝐾 + 𝐽) − 𝑁) mod 𝑁))
5413adantr 276 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ ℚ)
55 neg1z 9474 . . . . . 6 -1 ∈ ℤ
5655a1i 9 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → -1 ∈ ℤ)
5717adantr 276 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℚ)
5815nngt0d 9150 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 0 < 𝑁)
5958adantr 276 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 0 < 𝑁)
60 modqcyc 10576 . . . . 5 ((((𝐾 + 𝐽) ∈ ℚ ∧ -1 ∈ ℤ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → (((𝐾 + 𝐽) + (-1 · 𝑁)) mod 𝑁) = ((𝐾 + 𝐽) mod 𝑁))
6154, 56, 57, 59, 60syl22anc 1272 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (((𝐾 + 𝐽) + (-1 · 𝑁)) mod 𝑁) = ((𝐾 + 𝐽) mod 𝑁))
62 qsubcl 9829 . . . . . . 7 (((𝐾 + 𝐽) ∈ ℚ ∧ 𝑁 ∈ ℚ) → ((𝐾 + 𝐽) − 𝑁) ∈ ℚ)
6313, 17, 62syl2anc 411 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) ∈ ℚ)
6463adantr 276 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈ ℚ)
65 simpr 110 . . . . . . 7 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ¬ (𝐾 + 𝐽) < 𝑁)
6615nnred 9119 . . . . . . . . 9 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℝ)
6766adantr 276 . . . . . . . 8 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℝ)
6824nn0red 9419 . . . . . . . . 9 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℝ)
6968adantr 276 . . . . . . . 8 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ ℝ)
7067, 69lenltd 8260 . . . . . . 7 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (𝑁 ≤ (𝐾 + 𝐽) ↔ ¬ (𝐾 + 𝐽) < 𝑁))
7165, 70mpbird 167 . . . . . 6 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ≤ (𝐾 + 𝐽))
7269, 67subge0d 8678 . . . . . 6 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (0 ≤ ((𝐾 + 𝐽) − 𝑁) ↔ 𝑁 ≤ (𝐾 + 𝐽)))
7371, 72mpbird 167 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 0 ≤ ((𝐾 + 𝐽) − 𝑁))
742zred 9565 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℝ)
758nn0red 9419 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℝ)
7621simp3d 1035 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 < 𝑁)
777simp3d 1035 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 < 𝑁)
7874, 75, 66, 66, 76, 77lt2addd 8710 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) < (𝑁 + 𝑁))
7968, 66, 66ltsubaddd 8684 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (((𝐾 + 𝐽) − 𝑁) < 𝑁 ↔ (𝐾 + 𝐽) < (𝑁 + 𝑁)))
8078, 79mpbird 167 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) < 𝑁)
8180adantr 276 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) < 𝑁)
82 modqid 10566 . . . . 5 (((((𝐾 + 𝐽) − 𝑁) ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (0 ≤ ((𝐾 + 𝐽) − 𝑁) ∧ ((𝐾 + 𝐽) − 𝑁) < 𝑁)) → (((𝐾 + 𝐽) − 𝑁) mod 𝑁) = ((𝐾 + 𝐽) − 𝑁))
8364, 57, 73, 81, 82syl22anc 1272 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (((𝐾 + 𝐽) − 𝑁) mod 𝑁) = ((𝐾 + 𝐽) − 𝑁))
8453, 61, 833eqtr3d 2270 . . 3 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) mod 𝑁) = ((𝐾 + 𝐽) − 𝑁))
8524nn0zd 9563 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℤ)
8615nnzd 9564 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℤ)
8785, 86zsubcld 9570 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) ∈ ℤ)
8887adantr 276 . . . . . 6 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈ ℤ)
89 elnn0z 9455 . . . . . 6 (((𝐾 + 𝐽) − 𝑁) ∈ ℕ0 ↔ (((𝐾 + 𝐽) − 𝑁) ∈ ℤ ∧ 0 ≤ ((𝐾 + 𝐽) − 𝑁)))
9088, 73, 89sylanbrc 417 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈ ℕ0)
9115adantr 276 . . . . 5 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℕ)
92 elfzo0 10378 . . . . 5 (((𝐾 + 𝐽) − 𝑁) ∈ (0..^𝑁) ↔ (((𝐾 + 𝐽) − 𝑁) ∈ ℕ0𝑁 ∈ ℕ ∧ ((𝐾 + 𝐽) − 𝑁) < 𝑁))
9390, 91, 81, 92syl3anbrc 1205 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈ (0..^𝑁))
9434, 45subcld 8453 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾𝑁) ∈ ℂ)
9574, 76ltned 8256 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾𝑁)
9634, 45, 95subne0d 8462 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾𝑁) ≠ 0)
9794, 35, 36, 96addneintr2d 8331 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾𝑁) + 𝐽) ≠ (0 + 𝐽))
9834, 36, 45addsubd 8474 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) = ((𝐾𝑁) + 𝐽))
9939eqcomd 2235 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 = (0 + 𝐽))
10097, 98, 993netr4d 2433 . . . . 5 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) ≠ 𝐽)
101100adantr 276 . . . 4 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ≠ 𝐽)
102 eldifsn 3794 . . . 4 (((𝐾 + 𝐽) − 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ (((𝐾 + 𝐽) − 𝑁) ∈ (0..^𝑁) ∧ ((𝐾 + 𝐽) − 𝑁) ≠ 𝐽))
10393, 101, 102sylanbrc 417 . . 3 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
10484, 103eqeltrd 2306 . 2 (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
105 zdclt 9520 . . . 4 (((𝐾 + 𝐽) ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝐾 + 𝐽) < 𝑁)
106 exmiddc 841 . . . 4 (DECID (𝐾 + 𝐽) < 𝑁 → ((𝐾 + 𝐽) < 𝑁 ∨ ¬ (𝐾 + 𝐽) < 𝑁))
107105, 106syl 14 . . 3 (((𝐾 + 𝐽) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 + 𝐽) < 𝑁 ∨ ¬ (𝐾 + 𝐽) < 𝑁))
10885, 86, 107syl2anc 411 . 2 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) < 𝑁 ∨ ¬ (𝐾 + 𝐽) < 𝑁))
10944, 104, 108mpjaodan 803 1 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wcel 2200  wne 2400  cdif 3194  {csn 3666   class class class wbr 4082  (class class class)co 6000  cc 7993  cr 7994  0cc0 7995  1c1 7996   + caddc 7998   · cmul 8000   < clt 8177  cle 8178  cmin 8313  -cneg 8314  cn 9106  0cn0 9365  cz 9442  cq 9810  ..^cfzo 10334   mod cmo 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator