Proof of Theorem modsumfzodifsn
Step | Hyp | Ref
| Expression |
1 | | elfzoelz 10082 |
. . . . . . . 8
⊢ (𝐾 ∈ (1..^𝑁) → 𝐾 ∈ ℤ) |
2 | 1 | adantl 275 |
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℤ) |
3 | | zq 9564 |
. . . . . . 7
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℚ) |
4 | 2, 3 | syl 14 |
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℚ) |
5 | | elfzo0 10117 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (0..^𝑁) ↔ (𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) |
6 | 5 | biimpi 119 |
. . . . . . . . . 10
⊢ (𝐽 ∈ (0..^𝑁) → (𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) |
7 | 6 | adantr 274 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) |
8 | 7 | simp1d 999 |
. . . . . . . 8
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈
ℕ0) |
9 | 8 | nn0zd 9311 |
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℤ) |
10 | | zq 9564 |
. . . . . . 7
⊢ (𝐽 ∈ ℤ → 𝐽 ∈
ℚ) |
11 | 9, 10 | syl 14 |
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℚ) |
12 | | qaddcl 9573 |
. . . . . 6
⊢ ((𝐾 ∈ ℚ ∧ 𝐽 ∈ ℚ) → (𝐾 + 𝐽) ∈ ℚ) |
13 | 4, 11, 12 | syl2anc 409 |
. . . . 5
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℚ) |
14 | 13 | adantr 274 |
. . . 4
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ ℚ) |
15 | 7 | simp2d 1000 |
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℕ) |
16 | | nnq 9571 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℚ) |
17 | 15, 16 | syl 14 |
. . . . 5
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℚ) |
18 | 17 | adantr 274 |
. . . 4
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℚ) |
19 | | elfzo1 10125 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) |
20 | 19 | biimpi 119 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (1..^𝑁) → (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) |
21 | 20 | adantl 275 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) |
22 | 21 | simp1d 999 |
. . . . . . . 8
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℕ) |
23 | 22 | nnnn0d 9167 |
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈
ℕ0) |
24 | 23, 8 | nn0addcld 9171 |
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈
ℕ0) |
25 | 24 | nn0ge0d 9170 |
. . . . 5
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 0 ≤ (𝐾 + 𝐽)) |
26 | 25 | adantr 274 |
. . . 4
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → 0 ≤ (𝐾 + 𝐽)) |
27 | | simpr 109 |
. . . 4
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) < 𝑁) |
28 | | modqid 10284 |
. . . 4
⊢ ((((𝐾 + 𝐽) ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (0 ≤ (𝐾 + 𝐽) ∧ (𝐾 + 𝐽) < 𝑁)) → ((𝐾 + 𝐽) mod 𝑁) = (𝐾 + 𝐽)) |
29 | 14, 18, 26, 27, 28 | syl22anc 1229 |
. . 3
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) mod 𝑁) = (𝐾 + 𝐽)) |
30 | 24 | adantr 274 |
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈
ℕ0) |
31 | 15 | adantr 274 |
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℕ) |
32 | | elfzo0 10117 |
. . . . 5
⊢ ((𝐾 + 𝐽) ∈ (0..^𝑁) ↔ ((𝐾 + 𝐽) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ (𝐾 + 𝐽) < 𝑁)) |
33 | 30, 31, 27, 32 | syl3anbrc 1171 |
. . . 4
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ (0..^𝑁)) |
34 | 2 | zcnd 9314 |
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℂ) |
35 | | 0cnd 7892 |
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 0 ∈ ℂ) |
36 | 8 | nn0cnd 9169 |
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℂ) |
37 | 22 | nnne0d 8902 |
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ≠ 0) |
38 | 34, 35, 36, 37 | addneintr2d 8087 |
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ≠ (0 + 𝐽)) |
39 | 36 | addid2d 8048 |
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (0 + 𝐽) = 𝐽) |
40 | 38, 39 | neeqtrd 2364 |
. . . . 5
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ≠ 𝐽) |
41 | 40 | adantr 274 |
. . . 4
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ≠ 𝐽) |
42 | | eldifsn 3703 |
. . . 4
⊢ ((𝐾 + 𝐽) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ ((𝐾 + 𝐽) ∈ (0..^𝑁) ∧ (𝐾 + 𝐽) ≠ 𝐽)) |
43 | 33, 41, 42 | sylanbrc 414 |
. . 3
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ ((0..^𝑁) ∖ {𝐽})) |
44 | 29, 43 | eqeltrd 2243 |
. 2
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})) |
45 | 15 | nncnd 8871 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℂ) |
46 | 45 | adantr 274 |
. . . . . . . 8
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℂ) |
47 | 46 | mulm1d 8308 |
. . . . . . 7
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (-1 · 𝑁) = -𝑁) |
48 | 47 | oveq2d 5858 |
. . . . . 6
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) + (-1 · 𝑁)) = ((𝐾 + 𝐽) + -𝑁)) |
49 | 34, 36 | addcld 7918 |
. . . . . . . 8
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℂ) |
50 | 49, 45 | negsubd 8215 |
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) + -𝑁) = ((𝐾 + 𝐽) − 𝑁)) |
51 | 50 | adantr 274 |
. . . . . 6
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) + -𝑁) = ((𝐾 + 𝐽) − 𝑁)) |
52 | 48, 51 | eqtrd 2198 |
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) + (-1 · 𝑁)) = ((𝐾 + 𝐽) − 𝑁)) |
53 | 52 | oveq1d 5857 |
. . . 4
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (((𝐾 + 𝐽) + (-1 · 𝑁)) mod 𝑁) = (((𝐾 + 𝐽) − 𝑁) mod 𝑁)) |
54 | 13 | adantr 274 |
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ ℚ) |
55 | | neg1z 9223 |
. . . . . 6
⊢ -1 ∈
ℤ |
56 | 55 | a1i 9 |
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → -1 ∈ ℤ) |
57 | 17 | adantr 274 |
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℚ) |
58 | 15 | nngt0d 8901 |
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 0 < 𝑁) |
59 | 58 | adantr 274 |
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 0 < 𝑁) |
60 | | modqcyc 10294 |
. . . . 5
⊢ ((((𝐾 + 𝐽) ∈ ℚ ∧ -1 ∈ ℤ)
∧ (𝑁 ∈ ℚ
∧ 0 < 𝑁)) →
(((𝐾 + 𝐽) + (-1 · 𝑁)) mod 𝑁) = ((𝐾 + 𝐽) mod 𝑁)) |
61 | 54, 56, 57, 59, 60 | syl22anc 1229 |
. . . 4
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (((𝐾 + 𝐽) + (-1 · 𝑁)) mod 𝑁) = ((𝐾 + 𝐽) mod 𝑁)) |
62 | | qsubcl 9576 |
. . . . . . 7
⊢ (((𝐾 + 𝐽) ∈ ℚ ∧ 𝑁 ∈ ℚ) → ((𝐾 + 𝐽) − 𝑁) ∈ ℚ) |
63 | 13, 17, 62 | syl2anc 409 |
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) ∈ ℚ) |
64 | 63 | adantr 274 |
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈ ℚ) |
65 | | simpr 109 |
. . . . . . 7
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ¬ (𝐾 + 𝐽) < 𝑁) |
66 | 15 | nnred 8870 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℝ) |
67 | 66 | adantr 274 |
. . . . . . . 8
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℝ) |
68 | 24 | nn0red 9168 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℝ) |
69 | 68 | adantr 274 |
. . . . . . . 8
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (𝐾 + 𝐽) ∈ ℝ) |
70 | 67, 69 | lenltd 8016 |
. . . . . . 7
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (𝑁 ≤ (𝐾 + 𝐽) ↔ ¬ (𝐾 + 𝐽) < 𝑁)) |
71 | 65, 70 | mpbird 166 |
. . . . . 6
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ≤ (𝐾 + 𝐽)) |
72 | 69, 67 | subge0d 8433 |
. . . . . 6
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (0 ≤ ((𝐾 + 𝐽) − 𝑁) ↔ 𝑁 ≤ (𝐾 + 𝐽))) |
73 | 71, 72 | mpbird 166 |
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 0 ≤ ((𝐾 + 𝐽) − 𝑁)) |
74 | 2 | zred 9313 |
. . . . . . . 8
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℝ) |
75 | 8 | nn0red 9168 |
. . . . . . . 8
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℝ) |
76 | 21 | simp3d 1001 |
. . . . . . . 8
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 < 𝑁) |
77 | 7 | simp3d 1001 |
. . . . . . . 8
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 < 𝑁) |
78 | 74, 75, 66, 66, 76, 77 | lt2addd 8465 |
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) < (𝑁 + 𝑁)) |
79 | 68, 66, 66 | ltsubaddd 8439 |
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (((𝐾 + 𝐽) − 𝑁) < 𝑁 ↔ (𝐾 + 𝐽) < (𝑁 + 𝑁))) |
80 | 78, 79 | mpbird 166 |
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) < 𝑁) |
81 | 80 | adantr 274 |
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) < 𝑁) |
82 | | modqid 10284 |
. . . . 5
⊢
(((((𝐾 + 𝐽) − 𝑁) ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (0 ≤ ((𝐾 + 𝐽) − 𝑁) ∧ ((𝐾 + 𝐽) − 𝑁) < 𝑁)) → (((𝐾 + 𝐽) − 𝑁) mod 𝑁) = ((𝐾 + 𝐽) − 𝑁)) |
83 | 64, 57, 73, 81, 82 | syl22anc 1229 |
. . . 4
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → (((𝐾 + 𝐽) − 𝑁) mod 𝑁) = ((𝐾 + 𝐽) − 𝑁)) |
84 | 53, 61, 83 | 3eqtr3d 2206 |
. . 3
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) mod 𝑁) = ((𝐾 + 𝐽) − 𝑁)) |
85 | 24 | nn0zd 9311 |
. . . . . . . 8
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℤ) |
86 | 15 | nnzd 9312 |
. . . . . . . 8
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℤ) |
87 | 85, 86 | zsubcld 9318 |
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) ∈ ℤ) |
88 | 87 | adantr 274 |
. . . . . 6
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈ ℤ) |
89 | | elnn0z 9204 |
. . . . . 6
⊢ (((𝐾 + 𝐽) − 𝑁) ∈ ℕ0 ↔ (((𝐾 + 𝐽) − 𝑁) ∈ ℤ ∧ 0 ≤ ((𝐾 + 𝐽) − 𝑁))) |
90 | 88, 73, 89 | sylanbrc 414 |
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈
ℕ0) |
91 | 15 | adantr 274 |
. . . . 5
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → 𝑁 ∈ ℕ) |
92 | | elfzo0 10117 |
. . . . 5
⊢ (((𝐾 + 𝐽) − 𝑁) ∈ (0..^𝑁) ↔ (((𝐾 + 𝐽) − 𝑁) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ ((𝐾 + 𝐽) − 𝑁) < 𝑁)) |
93 | 90, 91, 81, 92 | syl3anbrc 1171 |
. . . 4
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈ (0..^𝑁)) |
94 | 34, 45 | subcld 8209 |
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 − 𝑁) ∈ ℂ) |
95 | 74, 76 | ltned 8012 |
. . . . . . . 8
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ≠ 𝑁) |
96 | 34, 45, 95 | subne0d 8218 |
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 − 𝑁) ≠ 0) |
97 | 94, 35, 36, 96 | addneintr2d 8087 |
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 − 𝑁) + 𝐽) ≠ (0 + 𝐽)) |
98 | 34, 36, 45 | addsubd 8230 |
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) = ((𝐾 − 𝑁) + 𝐽)) |
99 | 39 | eqcomd 2171 |
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 = (0 + 𝐽)) |
100 | 97, 98, 99 | 3netr4d 2369 |
. . . . 5
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) ≠ 𝐽) |
101 | 100 | adantr 274 |
. . . 4
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ≠ 𝐽) |
102 | | eldifsn 3703 |
. . . 4
⊢ (((𝐾 + 𝐽) − 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ (((𝐾 + 𝐽) − 𝑁) ∈ (0..^𝑁) ∧ ((𝐾 + 𝐽) − 𝑁) ≠ 𝐽)) |
103 | 93, 101, 102 | sylanbrc 414 |
. . 3
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) − 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})) |
104 | 84, 103 | eqeltrd 2243 |
. 2
⊢ (((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) ∧ ¬ (𝐾 + 𝐽) < 𝑁) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})) |
105 | | zdclt 9268 |
. . . 4
⊢ (((𝐾 + 𝐽) ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID
(𝐾 + 𝐽) < 𝑁) |
106 | | exmiddc 826 |
. . . 4
⊢
(DECID (𝐾 + 𝐽) < 𝑁 → ((𝐾 + 𝐽) < 𝑁 ∨ ¬ (𝐾 + 𝐽) < 𝑁)) |
107 | 105, 106 | syl 14 |
. . 3
⊢ (((𝐾 + 𝐽) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 + 𝐽) < 𝑁 ∨ ¬ (𝐾 + 𝐽) < 𝑁)) |
108 | 85, 86, 107 | syl2anc 409 |
. 2
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) < 𝑁 ∨ ¬ (𝐾 + 𝐽) < 𝑁)) |
109 | 44, 104, 108 | mpjaodan 788 |
1
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})) |